The Radiographic Management for Surgical Planning and Implant Placement: a Case of Atypical Antral Artery Position

Júlio César Schroder; Ana Paula Tulio Manfron; Alessandra S. Ditzel; Aaron Trujillo; Angela Deliga Schroder; Guilherme Strujak; Fernando H. Westphalen

The presence of severe bone atrophy becomes a great challenge in rehabilitation with dental implants. In cases of the posterior maxilla region, where alveolar bone resorption and maxillary sinus cavity pneumatization often compromises dental implant therapy, the maxillary sinus floor elevation technique with lateral approach has been used, for a long time, with high success predictability.

The maxillary sinus blood supply is derived from three branches of the maxillary artery: the infraorbital artery, the descending palatine artery and the posterior superior alveolar artery. Usually the posterior superior alveolar artery and the infraorbital artery form anastomoses, thus, the most important is called alveolar antral artery. The artery passes through the area where the bony window is most frequently opened during sinus floor elevation. Studies demonstrated the overall mean size of the diameter of the superior alveolar artery is 1.09 mm, means ranging from 0.8 mm to 1.59 mm. In order to prevent bleeding complications and maxillary bone necrosis during surgical procedures, involving this region, it is very important the knowledge on the blood supply and the sinus cavity vascularization, in particular of the lateral maxillary wall, due to an accidental rupture of a vessel during the osteotomy. Although some case series have described lower incidences, studies reported up to 20% of bleeding events.

Knowledge on the anatomical course of the posterior alveolar artery and its anastomoses is really important for a surgical procedure. Two-dimensional radiographs (panoramic radiograph and periapical) are limited in the observation of these anatomical structures. Due to this fact, the cone beam computer tomography (CBCT) provides a better observation, especially the distribution and the clinically relevant distance.

The purpose of this clinical case report was to emphasize the knowledge and radiographic interpretation of the presence of alveolar antral artery during sinus elevation and to discuss the clinical effects of these findings in oral rehabilitation.

2 Case Report

A 65-year-old female was addressed to private clinical, seeking implant rehabilitation in the region of first upper molar on the left side (Figure 1). At the previous pre-operative evaluation, the patient reported a postoperative complication, like bleeding, swelling and pain after a sinus augmentation that she had had 3 years before. Regarding the radiographic history, she reported that in the first intervention, she had performed only a panoramic radiography.
For a new intervention after clinical examination, for a better and safe surgical planning, a CBCT was requested and maxillary sinus floor elevation was indicated combined with grafting. Decision was taken for a one-stage technique with sinus elevation and simultaneous implant placement, on the left maxillary sinus. On a sagittal and cross-section CBCT images an alveolar antral artery was observed with diameter, measured in the CBCT, of about 1.72 mm, distance to alveolar antral artery to sinus floor 5.2 mm and distance of alveolar antral to alveolar crest of 11.63 mm, in the area planned for sinus elevation (Figure 2A e 2B).

Due to the presence of such a delicate and wide (in diameter) vascular structure in the area subjected to the surgical procedure, a modified sinus lift technique was proposed avoiding alveolar antral artery and in a second time the implant placement, as shown in the panoramic radiograph (Figure 3).

Figure 1 - Initial panoramic radiograph

Figure 2 - (A) Sagittal cross-section shows the antral artery. (B) Measurements in the area of sinus elevation: diameter 1.72 mm; distance between antral artery to sinus floor 5.2 mm and distance between antral to alveolar crest 11.63 mm.

2.1 Discussion

Damage of the alveolar antral artery during sinus augmentation with lateral approach can cause intense bleeding, hindering vision and may lead to perforation of the Schneiderian membrane in surgical procedure. Sinus elevation procedure was first published by Boyne and James and lateral window techniques was reported by Tatum. The area anatomy should be carefully examined before surgical interventions, principally in lateral window techniques. The blood supply in this region is composed by the posterior superior alveolar artery and the infraorbital artery. Anastomosis branches are located between the posterior superior alveolar artery and the infraorbital artery, both in the intra- and extra-osseous context.

Rosano et al. observed that in 100% of thirty dry maxillary sinus cases, there was an intraosseous anastomosis between posterior superior alveolar artery and the infraorbital artery. This anastomosis is also known as alveolar antral artery. The alveolar antral artery appears an intraosseous position ranging mean 64.3% to 71.4% of the cases and the intrasinusal position ranging mean 14.3% to 52.8% of the cases. This case reported an intrasinusal position of the artery. The intraosseous branch usually describes a S-straight or U-shaped course, forming a concave arch whose closest point to the osseous crest is located near the first molar region. This branch supplies the Schneiderian membrane, periosteum, and the lateral sinus wall.

The distance reported herein between the alveolar antral artery and sinus floor was 5.2 mm and the distance between the alveolar antral artery and the alveolar crest reported in this case is consistent with the study that shows that in edentulous patients the distance is shorter when compared with dentate patients. In this case the diameter was 1.72 mm, the literature demonstrated in more than 10% of cases, there is a risk of bleeding in artery with a diameter of 0.5 mm and, with the diameter more than 0.5 mm (1 to 2 mm), the probability of a high risk of hemorrhage is about 57%. In addition, considering the minimum height and the maximum external diameter of the antral artery, a precaution should be taken for the possibility of severe bleeding during or after osteotomy and modified techniques approaches. Panoramic radiographs are limited in the observation of these blood vessels. Detection of this artery is possible using a CBCT or CT scan that offers more precise and reliable linear measurements for imaging and maxillofacial structures reconstruction. A preoperative CBCT scan can be used as a better diagnostic tool to reduce surgical complications in suspected cases as well as conditions that may involve this artery. Therefore, the use of CBCT is recommended as a routine procedure prior to sinus floor elevation.

According to this case report and the literature review deep knowledge on the anatomy of this region is necessary before the surgical interventions for a safety surgery and for
a better integration of the grafting and implant. Due to this fact, the most importance of this case report is highlight the presence of these anatomic findings and could represent an alert to the general dentist in cases of surgery procedures.

4 Conclusions
The presence of alveolar antri artery and more precise information about the anatomical structure, can be revealed in cross sectional CBCT images. The identification of this anatomical structure is very important, through preoperative radiographic examination, avoiding possible bleeding complications, during and after the surgical procedures.

References