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MODE OF ACTION OF THE MAIN 
ANTI-PARASITIC DRUGS 
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ABSTRACT

Neglected tropical diseases affect more than 1 billion people in tropical and subtropical regions 
most of them are caused by parasites. Several of these diseases already have effective drugs 
capable of eliminating the causative parasite, however are not capable of interrupting the 
transmission cycle. This fact induces the continuous of repetitive treatments, which may result 
in the parasite’s resistance. This review aims to show the mechanism of action of the main 
drugs used to treat parasitic neglected tropical diseases in order to determine the drug’s target 
and help the understanding of how the parasites are killed within the host. 
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INTRODUCTION

	 Neglected tropical diseases (NTD) are transmissible diseases that 
prevail in tropical and subtropical regions affecting more than 1 billion people. 
Most of the infected individuals are living in poverty conditions without 
adequate sanitation, treated water and in close contact with vectors and 
domestic animals (WHO, 2017).

	 In spite of having effective anti-parasitic drugs against most of the 
NTD, their incidence is increasing worldwide especially due to its mode of 
transmission and its close relation to poor hygienic habits and degrading 
general condition of life (Andrews et al., 2014; Colley et al., 2014).

	 The mechanism of action of anti-parasitic drugs have been investigated 
because it can point to the drug’s target whether biochemical or structural 
within the parasite. As the target is determined also resistance mechanisms are 
found which help to understand why certain parasites present an increasing 
incidence and how the host-parasite relationship is established (Bergquist et 
al., 2017; Genetu et al., 2017). 

	 The drugs indicated by WHO to treat the most prevalent parasitic 
NTD’s are described in Table 1. 

This review aimed to describe the mode of action of the main drugs 
used to treat the most common parasitic NTD’s found in the Americas. 
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Table 1. Parasitic neglected tropical diseases, etiological agent, mode of 
transmission and main anti-parasitic drug used in its treatment.

Parasitic neglected 
tropical disease

Etiological agent Transmission Anti-parasitic 
drug

Chagas disease Trypanosoma cruzi Vector borne – 
insects of the 
Triatominae 
family; oral, blood 
transfusion, vertical 
transmission

Benznidazole and 
Nifurtimox

Leishmaniasis Leishmania spp Vector borne – flies 
of the Phlebotomus 
or Lutzomyia genus 

Pentavalent 
antimonials 
(sodium 
stibogluconate), 
miltefosine. 
Others

Taeniasis Taenia solium
Taenia saginata
Taenia asiática

Food borne – 
ingestion of raw or 
undercooked meat 
containing cysticerci

Praziquantel, 
Niclosamide, 
Nitazoxanide

Cysticercosis Taenia solium Food borne – 
ingestion of 
water or raw food 
contaminated with 
eggs of the parasite

Praziquantel and/
or Albendazole

Echinococcosis Echinococcus granulosus
Echinococcus multilocularis

Food/water borne 
- Ingestion of 
parasite’s eggs, dirty 
hands disease

Albendazole

Foodborne 
trematodiasis

Clonorchis sinensis
Opistorchis viverrinin
Fasciola hepatica
Fasciola gigantica
Gnathostoma spinigerum

Food borne – 
ingestion of 
fish, vegetables, 
crustaceans 
contaminated with 
larval parasites

Clonorchiasis and 
Opisthorchiasis – 
Praziquantel; 
Fascioliases – 
Triclabendazole; 
Gnathostomiasis 
– Albendazole

Schistosomiasis Schistosoma mansoni
Schistosoma haematobium 
Schistosoma japonicum, 
others

Active skin 
penetration of 
cercariae released 
from freshwater 
snails 

Praziquantel

Soil-transmitted 
helminthiases

Ascaris lumbricoides
Ancylostoma duodenale
Necator americanus
Trichuris trichiura

Soil contaminated 
with human faeces, 
dirty hands diseases 

Albendazole or 
mebendazole

Adapted from WHO, 2016; WHO, 2017; Aronson et al., 2016
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Benznidazole (BZN) and Nifurtimox (NFX)

	 BZN (N-benzyl-2-(2-nitro-1H-imidazol-1-yl)acetamide) and 
NFX ((E)-N-(3-methyl-1,1-dioxo-1,4-thiazinan-4-yl)-1-(5-nitrofuran-2-yl)
methanimine) belong to the nitroimidazole drug family therefore containing a 
nitro group linked to an imidazole ring (Trochine et al., 2014). 

BZN is a pro-drug that requires activation within the parasite as to 
perform its activity. An unusual prokaryotic type I nitroreductase was identified 
in trypanosomatid parasites which is responsible for the reductive activation of 
BZN (Trochine et al., 2014), while the bioactivation of NFX is dependent on a 
type II nitroreductase (Patterson & Wyllie, 2014).

Both BZN and NFX activities are related to their reduced 
nitrointermediates, which covalently modify and inactivate macromolecules 
such as lipids, DNA and proteins (Trochine et al., 2014). Also reactive oxygen 
species (ROS), generated by the interaction of reduced nitrointermediates with 
oxygen, lead to an intense intracellular oxidative stress and are particularly 
effective against T. cruzi because the parasite lacks catalases and is partially 
deficient in peroxidases (Docampo & Moreno 1984). Additionally, non-
enzymatic reactions with BZN intermediates generate glyoxal which is highly 
toxic and may contribute for the parasite’s cell death in spite of the low velocity 
of this metabolite formation (Patterson & Wyllie, 2014; Trochine et al., 2014).

Since BZN and NFX are mostly effective in the treatment of the 
acute phase of the infection, congenital transmission and children with 
chronic infection the search for new active compounds is paramount for 
the control of this disease (Paucar et al., 2016). Several studies have been 
performed as to determine new eligible targets within the parasite such as 
key metabolic enzymes: farnesyl pyrophosphate synthase, trans-sialidase, 
cruzipain (a cysteine protease), trypanothione reductase, glucose 6-phosphate- 
dehydrogenase, glyceraldehyde 3-phosphate-dehydrogenase and alpha-
hydroxy acid dehydrogenase (Rivera et al., 2009; Urbina, 2010). Inhibitors 
of de novo sterol biosynthesis are one of the most advanced strategies for the 
development on novel anti-T. cruzi agents as they block de novo production 
of alkyl-sterols which is an essential biochemical pathway for the parasite’s 
survival and is not replaced by the host’s cholesterol synthesis (Urbina, 2009). 
Some of these compounds are experimentally active against acute and chronic 
murine Chagas disease and against NFX and BZN-resistant strains. One of 
the advantages described in this approach is the selectivity and potency of 
the treatment, less side effects and better tolerability. On the other hand, the 
limitations are the cost and complexity to manufacture these compounds 
(Urbina, 2009). Antifungal drugs such as azoles in clinical use or undergoing 
clinical trials have been considered promising on in vitro and in vivo assays 
against T. cruzi. Some of these, such as posaconazole and a pro-drug of 
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ravuconazole, are being evaluated in studies aiming Chagas disease treatment 
(Buckner & Urbina, 2012).

The evaluation of other nitroheterocyclic drugs on acute and chronic 
phases (Francisco et al., 2016), natural compounds on in vitro analysis 
(Ebiloma et al., 2017) are approaches that may result in active compounds 
against the parasite. 

Also the improvement of chemical characteristics of the drugs such 
as the enhancement of BZN and NFX dissolution rate (Fonseca-Berzal et al., 
2015; Figueredo et al., 2017) may result in a better reach of the drug metabolites 
to the therapeutic targets within the parasite when it is in the amastigote form 
within the parasitophorous vacuole (Campo et al., 2016). 

Pentavalent antimonials (PA) – sodium stibogluconate 

Sodium stibogluconate (trisodium (3R,4S,5R)-1-{[(3R,4S,5R)-
3-carboxylato-5-[(1R)-1,2-dihydroxyethyl]-1-oxido-2,6,7-trioxa-1-
stibabicyclo[2.2.1]heptan-1-yl]oxy}-5-[(1R)-1,2-dihydroxyethyl]-1-hydroxy-
2,6,7-trioxa-1-stibabicyclo[2.2.1]heptane-3-carboxylate nonahydrate) is 
indicated in the treatment of leishmaniasis as an alternative to trivalent 
antimonials such as tartar emetic. It has been proposed that the drugs enter 
the parasitic cell via a phosphate transporter. Once inside the cell they induce 
the oxidation of thiols (glutathione, cysteine and cysteine-glycine) and inhibit 
trypanothione reductase (Wyllie et al., 2004). It is believed that PA needs to be 
reduced to the trivalent form as to be active, however it is not clear how this 
occurs inside the parasite as well as inside macrophages (Singh et al., 2012). 
Other studies suggest that after the activation of PA’s there is a depletion of 
purine nucleosides (Frezard et al., 2009). On the other hand, after reduction 
of PA’s to form trivalent antimonials there is a complexation with glutathione 
and other thiols which lead to a series of reactions that result in the apoptosis 
of the amastigote (Frezard et al., 2009). Other studies show that there is a 50% 
decrease in the parasite DNA, RNA protein and purine nucleoside triphosphate 
levels added to the reduction in ATP and GTP synthesis leading to a decrease 
in macromolecular synthesis within the parasite which contributes to its death 
(Mukherjee et al., 2016). Specifically, sodium stibogluconate inhibits DNA 
topoisomerase I leading to the inhibition of DNA replication and transcription 
(Walker & Saravia, 2004).

As PA are mostly effective against amastigotes which are the parasitic 
form inside macrophages it is highly recommended that drug trials even the 
ones selected from in silico platforms are performed in amastigote cultures and 
in animal experimental models (Andrews et al., 2014). 

The development of liposomal and cyclodexitrin-based formulations 
may enhance the therapeutic activity of PA’s as these formulations increased 
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the reach of the active compound within the parasite’s biochemical/molecular 
target (Frezard et al. 2009). 

Miltefosine

Miltefosine (1-O-hexadecylphosphocholine) is used in the treatment 
of visceral leishmaniasis. Its mode of action is not entirely understood and the 
most reports and investigations regarding it have been made in promastigote 
assays (Aronson et al., 2016). 

Its mode of action has been related to the impairment of the alkyl-
phospholipid metabolism and the biosynthesis of alkyl-anchored glycolipids 
and glycoproteins. It has been reported that in L. donovani promastigotes 
miltefosine is capable of inducing an apoptosis-like death (Verma & Dey, 
2004; Paris et al., 2004). Several reports have described that miltefosine affects 
the lipid metabolism of promastigotes with emphasis on sterols and fatty acids 
oxidation (Rakotomanga et al., 2005; Rakotomanga et al., 2007). Studies have 
shown that miltefosine also impairs the calcium homeostasis leading to the 
cell death by apoptotic mechanisms. The calcium regulation is especially 
compromised in the mitochondrion membrane, endoplasmic reticulum and 
acidocalcisomes. This process results in a large increase in intracellular calcium 
concentrations inducing the parasite death (Serrano-Martin et al., 2009; Benaim 
& Garcia, 2011). In combination with amiodarone, miltefosine is capable of 
inducing the cure of an experimental model of cutaneous leishmaniasis by L. 
mexicana through the disruption of the calcium homeostasis, inhibiting the 
proliferation of intracellular amastigotes (Serrano-Martin et al., 2009). 

Metabolomics analyses have determined that miltefosine is capable of 
altering around 10% of the metabolome of sensitive L. donovani promastigotes, 
mainly linked to the lipids metabolism (Vincent et al., 2014). On amastigotes it 
has been described the impairment of the polyamine metabolism from arginine 
to trypahothione added to an increase in the production of reactive oxygen 
species (Canuto et al., 2014). 

Miltefosine inhibits cytochrome c in Leishmania donovani 
promastigotes leading to an impairment of the respiratory chain, reduction in 
the oxygen consumption rate and mitochondrial depolarization (Luque-Ortega 
& Rivas, 2007). 

Amphotericin B in its liposomal formulation (AmBisome) is the most 
effective and frequently used drug for the treatment of visceral leishmaniasis 
worldwide, as monotherapy or in combinations with pentavalent antimonials 
or miltefosine (Rama et al., 2015). Clinical trials have demonstrated that 
patients present better tolerability to liposomal amphotericin B with greater 
effectiveness of the treatment (Freire et al., 1997). It has demonstrated 
excellent efficacy against visceral leishmaniasis and has been adopted as first-
line regimen in its treatment (Rahman et al., 2017).
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There is a need for new compounds against Leishmania species that 
are not only potent but also less toxic and more cost effective in humans (Rama 
et al., 2015).

Praziquantel (PZQ)

Praziquantel (2-cyclohexylcarbonyl(1,2,3,6,7,11 b)hexahydro-4H-
pyrazin(2,1-a)isoquinolin-4-0ne) is a pyrazinoisoquinoline and is the drug 
of choice to treat several helminthiasis such as schistosomiasis, teniasis, 
cysticercosis and others. In spite of the extensive studies of its mechanism of 
action it is still not totally elucidated (Thomas & Gonnert, 1977; Chai, 2013). 
It is interesting to highlight that PZQ is active against several flatworms and 
not nematodes and this occurs because the main target of the drug is a unique 
gene product which is found only in flatworms (Greenberg, 2005) or this target 
might be encoded in genes that are transcripted in different structural signatures 
that do not enable the interaction with PZQ (Greenberg, 2005). 

Since the first studies of the PZQ’s mechanism of action the tetanic 
contraction of the musculature and structural damage of the syncytial tegument 
were described (Andrews, 1985, Greenberg, 2005). These effects lead to 
exposure of parasite antigens on the worm surface enabling the immunological 
attack (Greenberg 2005). 

Tegumental damage is observed by vacuolization and blebbing in 
in vitro Schistosoma mansoni. This effect is dose dependent and may be so 
severe that parts of the parasite are lost (Andrews, 1985; Doenhoff et al., 
2008). Both muscle contraction and tegumental damage are Ca2+ - dependent 
processes as the removal of calcium from the medium blocks these responses 
(Greenberg, 2005). There are several targets related to calcium homeostasis 
within the parasite which are voltage-, ligand- and second messenger-gated 
calcium channels, intracellular calcium release channels and intracellular 
calcium buffers which alter the intracellular calcium concentrations resulting 
both in impaired membrane fluidity and in the spastic contracture of the muscle 
(Greenberg, 2005, Jeziorski & Greenberg, 2006; Aragon et al., 2009).

Transcriptomic assays that analyzed both sensitive and resistant 
miracidia and developing adult Schistosoma mansoni determined that 
susceptibility to PZQ is linked to genes involved in aerobic metabolism and 
cytosolic calcium regulation (Aragon et al., 2009). 

One problem of the PZQ efficacy is that it shows parasite stage and 
sex dependent differences in susceptibility when used in the schistosomiasis 
treatment (Greenberg, 2005). The importance of ATP-binding cassette (ABC) 
multidrug transporters in the praziquantel resistant Schistosoma mansoni 
strains have been reported. These studies have enabled the determination of the 
role of these transporters both in drug resistance and in several physiological 
functions such as excretion and permeability barriers (Greenberg 2014). Also 
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transient receptor potential (TRP) channel which is an ion channel related to the 
pharmacological properties of PZQ in S. mansoni. These channels are essential 
to transducing sensory signals and in the regulation of the intracellular calcium 
and therefore are related to sensitivity to PZQ (Bais &Greenberg 2016).

Nanoformulations of PZQ have been developed as to increase the 
efficacy of the drug as described in in vivo and in vitro essays in S. mansoni 
(Kolenyak-Santos et al., 2014) and in the experimental model of cysticercosis 
(Silva et al., 2016)

Niclosamide

Niclosamide (5 - chloro - N - (2 - chloro - 4 - nitrophenyl) - 2 - hydroxy 
- benzamide), is a benzenoid and is indicated to treat intestinal tapeworms. It 
has a poor absorption and does not reach active concentrations in plasma as 
neither the drug nor its metabolites have been recovered from the blood or 
urine, therefore it does not have efficacy against tissue parasites (Pearson & 
Hewlett, 1985; Swan, 1999). 

Adult worms, not larval stages nor eggs, are killed through an 
impairment of the oxidative phosphorylation or stimulation of ATPase activity. 
Parts of the parasites are eliminated with the feces while others are destroyed 
within the intestine (Poole et al., 1971; Pearson & Hewlett, 1985). 

The most reported use of niclosamide is as moluscicide in order to 
eliminate the intermediary hosts of Schistosoma sp. In Oncomelania hupensis, 
the intermediate host of S. japonicum, niclosamide induced a significant 
decrease in the number of mitochondria which presented morphological 
alterations of their cristae, associated to polarized heterochromatin, decreased 
number of ribosomes in the rough endoplasmic reticulums, damaged cell 
structures and organelles, leading to the death of the snails (Xiong et al., 
2016). Also molecular analyses performed in Biomphalaria glabrata showed 
that niclosamide interfered on the transcriptional responses of genes involved 
in the biotransformation of xenobiotics such as cytochrome P450, glutathione 
S-transferase, drug transporters, multi-drug resistance protein as efflux 
transporters and solute linked carrier as influx carriers (Zhang et al., 2015). 

Nitazoxanide (NTZ)

NTZ (2-[(5-nitro-1,3-thiazol-2-yl)carbamoyl]phenyl acetate) is a 
synthetic nitrothiazol-salicylamide derivative. Initially indicated as anti-
protozoal agent used against Giardia intestinalis and Cryptosporidium sp is 
now indicated in the treatment of both intestinal and tissue parasites, whether 
protozoans, flatworms or nematodes (White, 2004). 
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After oral administration it is rapidly hydrolyzed into tizoxanide. 
However both NTZ and tizoxanide have efficacy against parasites evaluated in 
in vitro and in vivo essays (Palomares-Alonso et al., 2007).

The biochemical target of NTZ and tizoxanide is the pyruvate 
ferredoxin oxidoreductase, the enzyme responsible for the decarboxylation of 
pyruvate into acetyl-CoA (White, 2004; Hoffman et al., 2007). It impairs the 
tricarboxilic acid cycle as it decreases the acetyl-CoA supply for the cycle to 
continue, forcing the parasite to use alternative sources of acetyl-CoA such as 
fatty acids oxidation and proteins catabolism (Isac et al. 2016). Also the excess 
of pyruvate induces acidosis due to an increase in lactate concentrations which 
also induces gluconeogenesis (Isac et al., 2016). 

Benzimidazoles – albendazole, mebendazole and triclabendazole 

Albendazole (methyl N-[6-(propylsulfanyl)-1H-1,3-benzodiazol-
2-yl]carbamate), mebendazole (methyl N-(6-benzoyl-1H-1,3-benzodiazol-
2-yl)carbamate) and triclabendazole (6-chloro-5-(2,3-dichlorophenoxy)-2-
methylthiobenzimidazole) are indicated in the treatment of both intestinal and 
tissue flatworms and nematodes (Gottschall, 1990; Lacey, 1990). 

The anti-parasitic main mode of action of benzimidazole drugs is to 
impair the tubulin polymerization into microtubules and therefore disrupting 
microtubule-based processes (Lacey, 1990; Fairweather & Boray, 1999). 
Tissue parasites, such as vascular and interstitial ones, are less sensitive than 
intestinal ones. Also activity against developing stages is superior to that 
against adult ones (Lacey, 1988). After the drug activation within the host, 
usually a sulfoxidation reaction in the liver, the active compound is capable 
of inducing impairment of β-tubulin polymerization, perturbation in parasite 
motility, nutrient uptake, enzyme secretion and glycolytic enzyme activities 
(Lacey, 1988, Martin et al., 1997). 

Biochemical effects are also described in the activity of fumarate 
reductase and on traditional and alternative energetic pathways both in in vitro 
and in vivo assays (Lacey, 1988; Vinaud et al., 2007; 2008; 2009; Fraga et al., 
2012). Glucose uptake impairment, uncoupling of oxidative phosphorylation, 
depression of ATP levels, inhibition of transmembrane proton discharge and 
increase in Na+ uptake were also described (Lacey, 1988).

The resistance against benzimidazoles is increasing due to mutations 
in the tubulin molecule and to increased active cellular efflux of the drug 
(Gottschall et al., 1990). Therefore the importance of the development of 
benzimidazole derivatives that present similar efficacy as albendazole but with 
different targets within the parasite. This is the case of benzimidazole derivatives 
which target α-tubulin subunit of microtubules and not the β-one. Studies have 
shown that these derivatives present similar efficacy both in biochemical and 
in mortality parameters (Hernández-Luiz et al., 2010; Márquez-Navarro et al., 
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2013; Fraga et al., 2016; Fraga et al., 2017). Mebendazole, on the other hand, 
elicits changes in adenine nucleotides, glucose uptake, glycogen depletion and 
in the respiratory end product (Behm & Bryant, 1979). 

Therefore we conclude that the understanding of the mechanism of 
action of the different anti-parasitic drugs help to determine how the parasite 
is killed within the host, how the parasite develops resistance and what can 
be done to prevent this. Especially when there are so many cases of drug 
resistance in veterinary helminthes showing the capability of the parasites to 
remain viable and contaminating the environment (Wolstenholme et al., 2004). 
It is of paramount importance that these drugs be used correctly and judiciously 
as to ensure the adequate response.
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