UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE QUÍMICA

Programa de Pós-Graduação em Ciências Biológicas (Bioquímica)

DUILIO RODRIGUES DE OLIVEIRA

Caracterização funcional de sistemas de dois componentes em

Xanthomonas citri

Versão corrigida da dissertação

São Paulo

Data de depósito na SPG:

08 de agosto de 2019

DUILIO RODRIGUES DE OLIVEIRA

Caracterização funcional de sistemas de dois componentes em

Xanthomonas citri

Dissertação apresentada ao Instituto de Química

da Universidade de São Paulo para a obtenção

do Título de Mestre em Ciências (Bioquímica)

Orientadora: Profa. Dra. Regina Lúcia Baldini

São Paulo

Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio convencional ou eletronico, para fins de estudo e pesquisa, desde que citada a fonte.

Ficha Catalográfica elaborada eletronicamente pelo autor, utilizando o programa desenvolvido pela Seção Técnica de Informática do ICMC/USP e adaptado para a Divisão de Biblioteca e Documentação do Conjunto das Químicas da USP

Bibliotecária responsável pela orientação de catalogação da publicação: Marlene Aparecida Vieira - CRB - 8/5562

Rodrigues de Oliveira, Duilio Caracterização funcional de sistemas de dois componentes em Xanthomonas citri / Duilio Rodrigues de Oliveira. - São Paulo, 2019. 123 p.
Dissertação (mestrado) - Instituto de Química da Universidade de São Paulo. Departamento de Bioquímica. Orientador: Lúcia Baldini, Regina
1. MICROBIOLOGIA. 2. REGULAÇÃO BACTERIANA DA EXPRESSÃO GÊNICA . 3. XANTHOMONAS. 4. BIOLOGIA MOLECULAR. 5. BIOQUÍMICA MICROBIANA. I. T. II. Lúcia Baldini, Regina, orientador. Duilio Rodrigues de Oliveira

Caracterização funcional de sistemas de dois componentes em Xanthomonas citri

	Dissertação apresentada ao Instituto de Química da Universidade de São Paulo para a obtenção do Título de Mestre em Ciências (Bioquímica)
Aprovado em:	
Banca Examinadora	
Prof. Dr	
Instituição:	
Assinatura:	
Prof. Dr	
Instituição:	
Assinatura:	
Prof. Dr	
Instituição:	
Assinatura:	
Prof. Dr	
Instituição:	
Assinatura:	
Prof. Dr.	
Instituição:	
Assinatura:	
Assinutura.	

Dedico esta dissertação em memória do meu avô Antônio Nertan Rodrigues, por sempre acreditar em mim e me incentivar a buscar a realização dos meus sonhos.

AGRADECIMENTOS

Agradeço à minha orientadora, Profa. Dra. Regina Baldini, por toda a paciência e compreensão que teve ao longo desses anos, pelas várias revisões feitas dessa dissertação, pelas discussões científicas sempre muito esclarecedoras e por sempre estar disponível para ajudar os seus alunos. Agradeço também por todas as reuniões feitas na sua casa, sempre muito agradáveis, e por ser um verdadeiro exemplo de profissional.

Agradeço aos meus colegas de laboratório que passaram e aos que estão no laboratório: Ana Laura, Ana Paula, Gabi, Gian, Gilberto, Larissa, Thays, Juliana, Caio, Ronaldo e Mariana pelas várias discussões científicas que tivemos e pelo ambiente de trabalho muito interessante. Agradeço especialmente ao Gilberto por ter sido muito paciente e didático, me ajudando com inúmeras dúvidas que tive desde o período da iniciação científica. Agradeço ao Gil e também à Ana Laura pelo auxílio na análise de RNA-seq presente nesta dissertação.

À Profa. Dra. Suely Lopes pelos vários momentos de discussão política e científica. À Sandra Mara pelas reuniões muito agradáveis na sua casa e pela amizade ao longo desses anos. À Luci Navarro pelo trabalho realizado ao longo de vários anos, pelas reuniões na sua casa, e por sempre levar alegria em todos os lugares que a vejo. À Dóris pelo trabalho de base e por ser sempre muito gentil.

Agradeço ao pessoal do laboratório do Prof. Dr. Shaker Chuck Farah, principalmente ao Raphael pelo apoio nos anos da iniciação científica e ao Edgar e German pelas discussões dos resultados que tive ao longo do mestrado, além da disponibilização de algumas das linhagens utilizadas neste trabalho.

Agradeço à minha família por poderem me dar o espaço que eu precisava para a realização do meu mestrado. Aos meus pais José Ailton e Maria Neides, aos meus irmãos Diego

e Débora, à minha cunhada Karen e agradeço especialmente aos meus queridos sobrinhos e sobrinhas: Kethelyn, Janaína, Jonata, Diogo e Ângelo por trazerem muita alegria e orgulho para o seu tio!

Aos docentes que participaram da minha banca de qualificação, Profa. Dra. Iolanda Midea Cuccovia, Prof. Dr. Frederico José Gueiros e Profa. Dra. Marisa Helena Gennari de Medeiros, pelas críticas e sugestões de melhoria.

Aos amigos da época da escola: Daiane, Vanda, Ronaldo e Aline, por fazerem parte da minha história. Aos amigos/família do intercâmbio: Juliana, Eleonore, Lúcio, Sheylla, Caio, Paulo e Victor não tenho palavras para descrever o quanto vocês foram, e continuam sendo, extremamente importantes para mim, amo todos vocês. Aos meus grandes amigos Luís e Michelle que também tiveram a paciência e compreensão para entender esse momento do mestrado e por serem sempre o alívio que eu precisava ter todas as vezes que os via.

Agradeço ao Washington e à sua família, principalmente à Jéssica e Patrícia, pelos vários momentos de amizade, pelo apoio incrível ao longo desses anos, por sempre me trazerem sentimentos bons e me fazerem rir, por aliviarem o peso que eu colocava sobre mim mesmo.

Por fim, agradeço a todos que passaram pela minha vida e contribuíram para o meu amadurecimento profissional e pessoal, a todos citados e não citados, sou eternamente grato.

À CAPES pelo apoio financeiro durante o desenvolvimento deste projeto.

RESUMO

Rodrigues de Oliveira, D. **Caracterização funcional de sistemas de dois componentes em** *Xanthomonas citri*, 2019. 123 p. Dissertação – Programa de Pós-Graduação em Ciências (Bioquímica). Instituto de Química, Universidade de São Paulo, São Paulo.

Xanthomonas citri subsp. citri, é uma bactéria pertencente à classe das Gamaproteobactérias, fitopatogênica, que exibe uma especificidade patógeno-hospedeiro extremamente alta. X. citri infecta plantas do gênero Citrus, causando o cancro cítrico, uma doença destrutiva encontrada em cultivos ao redor do mundo. Esta bactéria apresenta em seu genoma 34 genes que codificam proteínas relacionadas com o metabolismo do segundo mensageiro c-di-GMP. Em geral, níveis elevados de c-di-GMP favorecem a sessilidade e a produção de exopolissacarídeos, enquanto níveis mais baixos resultam em maior motilidade e aumento na dispersão do biofilme. Com o intuito inicial de buscar novos alvos de X. citri que dependessem dos níveis intracelulares desse segundo mensageiro, foram analisados os proteomas de linhagens mutantes em diguanilato ciclases específicas. Nas análises proteômicas por eletroforese bidimensional foram identificadas 15 proteínas diferencialmente expressas presentes em mais de um dos proteomas dos mutantes analisados. Entre estas, duas proteínas reguladoras de resposta e preditas de participar de sistemas de dois componentes, XAC0834 e XAC3443, foram encontradas sendo mais expressas em mutantes que apresentavam fenótipo de alto c-di-GMP; enquanto uma proteína hipotética provavelmente presente na membrana, XAC3657, estava mais expressa em linhagens com fenótipos relacionados a baixos níveis de c-di-GMP. Por meio de uma análise por qRT-PCR foi verificado que os níveis de mRNA para XAC0834 e XAC3443 não variam entre as linhagens e, portanto, a diferença nos níveis de expressão destas proteínas deve ocorrer póstranscricionalmente. Como os sistemas de dois componentes e proteínas de membrana são importantes para a adaptação das bactérias a diferentes condições ambientais, o objetivo do presente trabalho foi a caracterização funcional de XAC0834, XAC3433 e XAC3657, com maior

ênfase em XAC0834 e na provável proteína sensora cognata, XAC0835, de forma a contribuir para a melhor compreensão dos processos de regulação da virulência de bactérias. Na análise da organização gênica dos genes que codificam estas proteínas, foi verificado que os genes XAC0834 e XAC0835 formam um operon, juntamente com a tioesterase XAC0833 e, portanto, o nível transcricional destes genes ocorre pelos mesmos reguladores, apoiando a hipótese de se tratarem de um sistema de dois componentes; assim como os genes XAC3442 e XAC3443. Utilizando uma linhagem mutante em XAC0834, mostramos que esta proteína impacta positivamente a motilidade sliding e a formação de biofilme, e tem efeito contrário no crescimento de X. citri em meio rico 2xTY e na motilidade twitching. Como estes fenótipos são modulados por c-di-GMP, é possível que a deleção deste gene altere significativamente os níveis de c-di-GMP nas células. Além disto, foi verificado que as proteínas XAC0835, XAC3443 e XAC3657 não afetam a motilidade sliding, mas, individualmente, XAC0835 é importante para a formação de biofilme; XAC3657 afeta negativamente o crescimento de X. citri em meio rico 2xTY; e XAC3443 afeta negativamente a motilidade twitching. Na análise do transcritoma da superexpressão de XAC0834, foi observado que havia aumento na expressão de genes relacionados ao sistema de secreção do tipo IV e na montagem do pilus do tipo IV, em comparação com a linhagem selvagem, o que pode estar relacionado aos fenótipos observados. Este trabalho forneceu subsídios importantes para a compreensão do papel fisiológico do sistema de dois componentes XAC0834/XAC0835, assim como do regulador de resposta XAC3443 e da proteína hipotética, XAC3657, em X. citri, o que pode contribuir para o entendimento da relação de c-di-GMP com os sistemas de dois componentes.

Palavras-chave: *Xanthomonas citri*, sistemas de dois componentes, c-di-GMP, XAC0834/XAC0835, motilidade, biofilme.

ABSTRACT

Rodrigues de Oliveira, D. Functional characterization of two-component systems in *Xanthomonas citri*, 2019. 123 p. Master's Thesis – Graduate Program in Biochemistry. Instituto de Química, Universidade de São Paulo, São Paulo.

Xanthomonas citri subsp. citri, is a phytopathogenic Gammaproteobacteria, with extremely high pathogen-host specificity. X. citri infects plants of the genus Citrus, causing citrus canker, a destructive disease found in crops around the world. The genome of X. citri pv. citri 306 (XAC 306) contains 34 genes encoding proteins related to the second messenger c-di-GMP metabolism. In general, high levels of c-di-GMP favor the sessility and exopolysaccharide production, whereas lower levels result in greater motility and increased biofilm dispersion. In order to initially search for new X. citri targets that depend on the intracellular levels of this second messenger, the proteomes of specific diguanylate cyclase mutant strains were analyzed by two-dimensional electrophoresis. Fifteen differentially expressed proteins present in more than one of the mutant proteomes compared to wild type were identified. Among these, two proteins predicted to participate as response regulators in two-component systems, XAC0834 and XAC3443, were found to be more expressed in mutants with high c-di-GMP phenotypes; whereas a hypothetical membrane protein, XAC3657, was more expressed in strains with low cdi-GMP-related phenotypes. Relative mRNA levels for XAC0834 and XAC3443, as determined by qRT-PCR, do not vary among the analyzed strains, suggesting post-transcriptional regulation. Because two-component systems and membrane proteins are important for the adaptation of bacteria to different environmental conditions, the aim of this work was the functional characterization of XAC0834, XAC3433 and XAC3657, with greater emphasis on XAC0834 and its probable cognate sensor protein, XAC0835, contributing to a better understanding of the processes of bacterial virulence regulation. Genes XAC0834 and XAC0835 form an operon, together with the XAC0833 coding for a thioesterase, suggesting that they are co-regulated, as well as the *XAC3442* and *XAC3443* genes. Using a mutant strain in XAC0834, we show that this protein positively impacts sliding motility and biofilm formation and has the opposite effect on *X. citri* growth in rich medium and twitching motility. Because these phenotypes are modulated by c-di-GMP, deletion of this gene may alter cellular c-di-GMP levels. In addition, we found that XAC0835, XAC3443 and XAC3657 proteins do not affect sliding motility, but XAC0835 is important for biofilm formation; XAC3657 negatively affects *X. citri* growth in rich medium; and XAC3443 negatively affects twitching motility. The RNA-seq transcriptome of *X. citri* overexpressing *XAC0834* was compared to the control strain, and there was an increase in the expression of genes for the type IV secretion system and the assembly of the type IV pilus, which may be related to the observed phenotypes. This work provided important insights for understanding the physiological role of the XAC0834/XAC0835 two-component system as well as the XAC3443 response regulator and the hypothetical protein XAC3657, in *X. citri* which may contribute to the understanding of the relationship of c- di-GMP with two-component systems.

Key words: *Xanthomonas citri*, two-component systems, c-di-GMP, XAC0834/XAC0835, motility, biofilm.

LISTA DE FIGURAS E TABELAS

Figura 1. Estrutura e funções fisiológicas do segundo mensageiro c-di-GMP24
Figura 2. O sistema de dois componentes25
Figura 3. Estrutura esquemática da arquitetura dos domínios de XAC0834 e XAC083527
Figura 4. Estrutura esquemática da arquitetura dos domínios de XAC344329
Figura 5. Representação esquemática da localização dos primers utilizados37
Figura 6. Extrato proteico total de um ensaio de WT/pBRA (azul) e ΔXAC2382/pBRA (vermelho)
submetidos à eletroforese bidimensional45
Figura 7. Análise por qRT-PCR dos níveis relativos de mRNA das proteínas diferencialmente
expressas
Figura 8. Predição de formação de operon de acordo com o banco de dados ProOpDB50
Figura 9. XAC0833/XAC0834/XAC0835 e XAC3442/XAC3443 constituem operons52
Figura 10. Alinhamento das sequências de aminoácidos das proteínas previamente
denominadas ColR54
Figura 11. Alinhamento das sequências de aminoácidos das proteínas previamente
denominadas ColS55
Figura 12. Domínios presentes nas proteínas previamente denominadas ColR/ColS56
Figura 13. XAC0834 afeta positivamente a motilidade <i>sliding</i> 58
Figura 14. A deleção de XAC0834 afeta negativamente o espalhamento da colônia59
Figura 15. XAC0834 é importante para a formação de biofilme62

Figura	16.	XAC0834	é	importante	para	а	formação	de	biofilme	em	tubos	de
poliesti	reno											.63
Figura :	17. As	deleções	de X	4 <i>C0834</i> e XA	C3657	afet	am positiv	amen	te o cresci	ment	o de <i>X.</i> (citri
em mei	o rico	2xTY										66
Figura 1	L 8. XA	C0834 não	afet	a o crescime	nto de J	X. ci	<i>tri</i> em meio	o SB				67
Figura 1	l 9. XA	C0834 afet	a o p	erfil de moti	lidade t	twite	ching					69
Figura 2	20. XA	C0834 afet	ta a n	notilidade tv	vitching							70
Figura 2	21. XA	C0834 afet	а ро	sitivamente	a motili	dad	e swimmin	g				72
Figura 2	22. XA	C0834 é im	nport	ante para a i	notilida	ade	swimming.					73
Figura 2	2 3. XA	C0834 afet	a po	sitivamente	a produ	ição	de goma xa	antan	a			75
Figura 2	24. Fu	nções prec	ditas	das proteína	as codif	icas	pelos gene	es end	contrados	difere	ncialme	ente
express	os na	linhagem \	WT/β	o <i>XAC0834,</i> ei	m comp	bara	ção com W	T/pJN	1105			79
Figura 2	25. An	álise por ql	RT-P	CR de genes s	selecior	nado	os a partir d	o RNA	A-seq de W	/Т/р <i>Х</i> /	A <i>C0834</i> .	81
Figura 2	26. Loo	calização go	enôn	nica dos gene	es relaci	iona	dos com o	metal	bolismo de	e xanti	ina	86
Figura 2	2 7. Pos	ssíveis rela	ções	entre as pro	teínas e	estu	dadas e os f	enóti	pos obser\	/ados.		89

Tabela 1. Linhagens e plasmídeos utilizados neste trabalho	31
Tabela 2. Oligonucleotídeos utilizados neste trabalho	33
Tabela 3. Mutantes utilizados para a análise proteômica	46
Tabela 4. Proteínas identificadas em diferentes cepas e a sua razão quando comparadas c	om a
cepa selvagem	47

Tabela	5.	Genes	diferencialmente	expressos	encontrados	na	análise	do	RNA-seq	de
WT/pX4	AC08	334 em o	comparação com a	linhagem se	lvagem e o val	or de	efold-cha	ange	(FC)	77

Tabela 6. Comparação entre as razões de expressão	(fold change) o	de genes determinadas	por
RNA-seq e qRT-PCR na comparação WT/pXAC0834 x	WT/pJN105		82

LISTA DE ABREVIATURAS E SIGLAS

- ATP adenosina trifosfato
- Avr avirulência
- B. subtilis Bacillus subtilis
- c-di-GMP bis-(3',5')-di-guanosina monofosfato cíclico
- DGC diguanilato ciclase
- DNA ácido desoxirribonucleico
- DSF fator difusível de sinal
- EPS exopolissacarídeo
- E. coli Escherichia coli
- FC fold-change mudança dobrada
- Gm gentamicina
- GMP guanosina monofosfato
- GTP guanosina trifosfato
- HK histidina quinase
- KEGG Enciclopédia Kyoto de Genes e Genomas
- Km canamicina
- LB Luria-Bertani
- LPS lipopolissacarídeo
- mRNA RNA mensageiro

- pb pares de bases
- PCR Reação em cadeia da polimerase
- PDE fosfodiesterase
- ProOpDB Banco de dados de operons procarióticos
- pv patovar
- qRT-PCR PCR quantitativo em tempo real
- RT-PCR PCR de transcrição reversa
- RNA ácido ribonucleico
- rRNA RNA ribossomal
- RNA-seq Sequenciamento shotgun do transcritoma completo
- RR regulador de resposta
- Sp espectinomicina
- Sm estreptomicina
- SMART Ferramenta de Pesquisa da Arquitetura Simples e Modular
- TCS Sistema de dois componentes
- T4SS Sistema de secreção tipo IV
- T4P pilus tipo IV
- X. citri Xanthomonas citri

SUMÁRIO

1.	Introdu	ıção	19
	1.1	Xanthomonas citri subsp. citri	19
	1.2	O cancro cítrico	.20
	1.3	Os fatores associados à virulência de Xanthomonas spp	22
	1.4	O segundo mensageiro c-di-GMP	.23
	1.5	Os sistemas de transdução de sinal de dois componentes	24
	1.6	A proteína reguladora de resposta XAC0834 e a proteína sensora XAC0835	26
	1.7	A proteína reguladora de resposta XAC3443	28
2.	Objetiv	/os	.30
3.	Materi	ais e Métodos	31
	3.1	Linhagens, plasmídeos e condições de cultura	31
	3.2	Técnicas básicas de biologia molecular	33
	3.3	Construção dos mutantes não-polares	36
	3.4	Ensaios de motilidade <i>sliding</i>	38
	3.5	Ensaios de motilidade <i>twitching</i>	38
	3.6	Ensaios de motilidade <i>swimming</i>	38
	3.7	Ensaio para produção de goma xantana	39
	3.8	Ensaios de iniciação de biofilme para análise qualitativa e quantitativa	40
	3.9	Estudo da organização de genes em <i>operon</i>	40
	3.10	qRT-PCR	. 41
	3.11	Análise do transcritoma	41
	3.12	Quantificação da expressão gênica	42
	3.13	Curvas de crescimento	42
	3.14	Eletroforese bidimensional	42

4.	Resulta	ultados e Discussão44						
	4.1	Análise	Análise proteômica44					
	4.2	Estudo	Estudo da organização gênica50					
	4.3	Nomer	nclatura de XAC083453					
	4.4	Caracte	erização fenotípica57					
		4.4.1	Ensaio de motilidade do tipo <i>sliding</i> 57					
		4.4.2	Formação de biofilme60					
		4.4.3	Curvas de crescimento64					
		4.4.4	Ensaio de motilidade do tipo <i>twitching</i> 68					
		4.4.5	Ensaio de motilidade do tipo <i>swimming</i> 71					
		4.4.6	Ensaio de produção de goma xantana74					
	4.5	Perfil t	ranscritômico da linhagem WT/pXAC083476					
		4.5.1.	Genes envolvidos no Sistema de Secreção do tipo IV82					
		4.5.2.	Genes envolvidos na montagem do pilus do tipo IV84					
		4.5.3.	Genes envolvidos no metabolismo de xantina85					
		4.5.4.	Características de outros genes analisados86					
	4.6	Conside	erações finais e Perspectivas88					
5.	Conclu	sões						
6.	5. Referências bibliográficas93							
Súmula curricular102								
Apêndice A105								
Apêndice B116								

1. Introdução

1.1 Xanthomonas citri subsp. citri.

Xanthomonas citri subsp. *citri,* XAC 306, é uma bactéria pertencente à classe das Gamaproteobactérias, fitopatogênica, caracterizada pela ampla diversidade metabólica dada pela habilidade de utilizar diversas fontes de energia, exibindo uma especificidade patógeno-hospedeiro extremamente alta (Boch e Bonas, 2010).

As espécies do gênero *Xanthomonas* apresentam morfologia de bastonete medindo entre 0,8 e 2,9 μm de comprimento, e entre 0,2 e 0,6 μm de diâmetro, com um flagelo polar (monotríquia) (Graham *et al.*, 2004; Moreira *et al.*, 2005). Sua colônia apresenta pigmentação amarelada devido à produção do pigmento xanthomonadina, que se liga à membrana celular, e apresenta aspecto mucoide dado pela produção de exopolissacarídeos (EPS), principalmente a goma xantana, que auxiliam na prevenção da desidratação da bactéria (Brunings e Gabriel, 2003; Graham *et al.*, 2004; Dunger *et al.*, 2007).

São bactérias aeróbicas obrigatórias com uma temperatura de crescimento ótimo entre 25°C e 30°C (Sumares *et al.,* 2015). Membros do gênero *Xanthomonas* infectam aproximadamente 268 dicotiledôneas e 127 monocotiledôneas, com a maioria dessas plantas sendo de regiões de climas úmidos e quentes, e por afetarem plantas que são comercializadas representam grande importância econômica (Chan e Goodwin, 1999; Graham *et al.*, 2004).

As diferentes espécies de *Xanthomonas* infectam tipos específicos de plantas, podendo existir patovares (pv) com alta especificidade para um determinado tecido vegetal ou tipo de planta. *Xanthomonas citri* infecta plantas do gênero *Citrus*, como laranja, limão e *grapefruit*, causando o cancro cítrico, uma importante doença encontrada em cultivos ao redor do mundo (Vernière, Gottwald e Pruvost, 2003).

1.2 O cancro cítrico.

A colonização de plantas cítricas por *X. citri* afeta a maioria de suas variedades comerciais e promove o desenvolvimento do cancro cítrico, uma doença destrutiva, limitando a produção de plantas cítricas por todo o mundo (Graham *et al.*, 2004).

As doenças causadas por *Xanthomonas* spp. podem ser disseminadas para outras plantas por práticas agrícolas como a poda e pelo transporte de bactérias de campos adjacentes pela água da chuva, utilizando aberturas naturais como estômatos, hidatódios, lenticelas ou feridas para a sua invasão no hospedeiro (Ryan *et al.*, 2011). O patógeno se multiplica nos espaços intercelulares ao atingir o espaço mesofílico, desenvolvendo a patologia que é caracterizada pelos estágios iniciais de encharcamento do tecido, hipertrofia celular, hiperplasia do tecido infectado, clorose e necrose da região colonizada. Os sintomas típicos causados pelo desenvolvimento da patologia são: lesões crostosas cercadas por uma margem de água ou óleo nas frutas, tronco e folhas, induzindo a desfoliação; declínio geral da árvore; fruto manchado; e queda prematura do fruto em árvores muito infectadas (Vernière, Gottwald e Pruvost, 2003; Graham *et al.*, 2004).

O desenvolvimento da doença, portanto, causa uma grande perda no valor comercial das frutas. Outras formas de disseminação da bactéria podem ser o uso do solo já contaminado, visto que *Xanthomonas* spp. pode viver em tecidos de plantas mortas presentes no solo (Torres, Maringoni e Silva, 2009); assim como a presença de insetos como a larva minadora de *citrus, Phyllocnistis citrella*, que também pode ser um fator contribuinte para a transmissão porque as lesões nas folhas causadas por este inseto tornam a planta mais suscetível à infecção (Jesus *et al.,* 2006).

Uma das abordagens utilizadas na tentativa de erradicar essa doença foi a destruição de todas as plantas em um raio de 30 metros da planta infectada identificada. Este processo foi utilizado durante muitos anos, mas atualmente foi substituído com a destruição apenas da planta infectada e a borrifação de outras plantas em um raio de 30 metros com uma solução de 0,1 % de cobre metálico, que forma uma camada protetora na superfície de folhas e frutos e previne a entrada da bactéria nos tecidos e o surgimento de novas lesões (Graham e Gottwald, 1991). Outra abordagem recente para a prevenção do cancro cítrico, assim como de outras doenças como o amarelinho e *greening*, é a pulverização sobre as folhas e a aplicação no solo como fertilizante de uma solução de N-acetilcisteína, por esta molécula reduzir a formação de biofilme e motilidade bacterianas, podendo ser absorvida pelo xilema (Picchi *et al.*, 2016; Muranaka *et al.*, 2013). Essas medidas diminuem a incidência da doença, mas ainda não são eficazes para a sua completa erradicação por não agirem no interior das plantas já infectadas (Tunes, 2019; Fundecitrus, 2016).

Os maiores produtores mundiais de laranja são o Brasil e os Estados Unidos. No Brasil, mais de um milhão de hectares são destinados ao cultivo de frutas cítricas, sendo o país responsável por aproximadamente 50% da produção mundial de suco concentrado, respondendo por 80% da exportação mundial. Entre 1,5 a 2,5 bilhões de dólares são gerados todos os anos por esse mercado, ocupando aproximadamente 230.000 empregos diretos (Fundecitrus, 2019; Neves, 2010). Portanto, há uma grande importância deste segmento para a economia do Brasil.

No Brasil, foram causados grandes prejuízos econômicos na última década, com a perda de aproximadamente 40 milhões de árvores devido a ocorrência de três principais doenças: cancro cítrico; clorose variegada dos citros, causada pela bactéria *Xylella fastidiosa*; e *greening*, causada pelas bactérias *Candidatus Liberibacter asiaticus* e *Candidatus Liberibacter americanus*. Entre 2017 e 2018, a incidência de *greening* aumentou 8,5%, afetando 18% das plantas; e a incidência de cancro cítrico teve um crescimento de 35%, atingindo aproximadamente 12% das plantações paulistas e do Triângulo e sudoeste mineiro. (Tunes, 2019; Sanches *et al.*, 2014; Fundecitrus, 2016). Portanto, entender a fisiologia das bactérias causadoras dessas doenças é uma questão relevante de pesquisa básica, pois o conhecimento gerado pode levar a novas estratégias de prevenção e tratamento, reduzindo estes prejuízos.

1.3 Os fatores associados à virulência de Xanthomonas spp.

A coevolução antagonista entre uma planta e uma bactéria pode ser resumida em um processo de três passos: primeiro, ocorre o ataque e a exploração da planta; segundo, essa exploração reduz a aptidão da planta, selecionando uma defesa que será favorecida na população da planta, aumentando a sua ocorrência; e terceiro, as plantas efetivamente resistentes diminuem a aptidão da bactéria, agindo como uma força seletiva para um genótipo que supere essa defesa e então espalhe esse genótipo na população das bactérias (Stahl e Bishop, 2000). Essa corrida armamentista pode ser determinada no nível fenotípico ao examinar sistemas genéticos antagônicos, que refletem a presença de genes de resistência (R) na planta e seus respectivos genes de avirulência (Avr) nas bactérias e de enzimas da planta que atacam a parede celular e seus inibidores presentes nas bactérias (Stahl e Bishop, 2000).

As plantas produzem uma variedade de enzimas de defesa que atacam os polissacarídeos ou peptidoglicanos das paredes celulares dos patógenos e os patógenos podem contra-atacar estas enzimas com vários inibidores (Stahl e Bishop, 2000). As bactérias fitopatogênicas contam com um arsenal de fatores de virulência que garantem a sua sobrevivência no hospedeiro, auxiliando na aderência à planta, invasão do espaço intercelular, aquisição de nutrientes e sobreposição às respostas de defesa da planta (Stahl e Bishop, 2000; Yan e Wang, 2011).

Dentre os fatores de virulência estão os sistemas de secreção. Seis tipos principais destes sistemas, denominados do tipo I, II, III, IV, V e VI, são encontrados em bactérias Gram-negativas, cada um dos quais apresentam mecanismos distintos como, por exemplo, efetuar o transporte de proteínas através da membrana citoplasmática tanto da bactéria, quanto do hospedeiro (Buttner e Bonas, 2002; Tseng, Tyler e Setubal, 2009). Outras estruturas presentes na superfície de *Xanthomonas* sp. que podem ser importantes para promover a sua virulência são o EPS goma xantana, lipopolissacarídeos (LPS), pilus tipo 4 (T4P) e adesinas, (Buttner e Bonas, 2002), sendo que algumas destas estruturas podem ser reguladas pelo segundo mensageiro c-di-GMP.

1.4 O segundo mensageiro c-di-GMP.

O segundo mensageiro bis-(3',5')-di-guanosina monofosfato cíclico, c-di-GMP, é um dinucleotídeo produzido por proteínas diguanilato ciclases com domínio GGDEF ativo a partir de duas moléculas de GTP, e degradado por proteínas fosfodiesterases com domínios EAL ou HD-GYP ativos (Boch e Bonas, 2010) (**Figura 1**). Todos esses domínios são assim nomeados devido a sequências de aminoácidos conservados em seus domínios, que constituem os sítios ativos dessas enzimas.

O c-di-GMP é de crucial importância na decisão entre os estilos de vida séssil ou móvel, de acordo com sua concentração celular, que depende da atividade de diguanilato ciclases (DGC) e fosfodiesterases (PDE) específicas (Hengge, 2009). Em geral, níveis elevados de c-di-GMP favorecem a sessilidade e a produção de EPS com subsequente formação de biofilme, enquanto níveis mais baixos levam à maior motilidade e à dispersão do biofilme (Simm *et al.*, 2004).

Biofilmes são de grande interesse médico, industrial e agrícola por sua prevalência e resistência geral a condições adversas, tais como: estresse ambiental, tratamento antimicrobiano e mecanismos de defesa do hospedeiro (Danhorn e Fuqua, 2007; Karatan e Watnick, 2009). A habilidade do patógeno do cancro cítrico de formar biofilme aumenta a persistência epifítica, a qual possui um importante papel nos estágios iniciais de infecção (Rigano *et al.*, 2007; Li e Wang, 2011).

Com o sequenciamento do genoma de XAC 306 (Da Silva *et al.*, 2002), assim como de seus parentes próximos, como *X. axonopodis* pv. *aurantifolli* (Cubero e Graham, 2002), a identificação de determinantes genéticos e processos regulatórios para formação de biofilme, entre outros fatores de virulência, foi facilitada.

Figura 1. Estrutura e funções fisiológicas do segundo mensageiro c-di-GMP. As concentrações intracelulares de c-di-GMP são controladas por diguanilato ciclases e fosfodiesterases específicas. Altos níveis de c-di-GMP reduzem a motilidade pela repressão da expressão gênica de flagelos ou interferindo na função do motor flagelar, assim como estimulam a formação de biofilme e a expressão de adesinas e exopolissacarídeos. Baixos níveis de c-di-GMP levam a expressão de genes de virulência em infecções agudas (Hengge, 2009; Andrade, 2011).

1.5 Os sistemas de transdução de sinal de dois componentes.

Para que a bactéria adapte-se ao ambiente, possibilitando sua sobrevivência e reprodução, é necessária a percepção das mudanças no mesmo; portanto, esses organismos desenvolveram uma variedade de sistemas que ligam o estímulo ambiental às alterações na expressão gênica (Yan e Wang, 2011). Os sistemas de transdução de sinal de dois componentes (TCS, *twocomponent system*) são mecanismos predominantes pelos quais as bactérias percebem e se adaptam às mudanças do ambiente intracelular e extracelular (Skerker *et al.*, 2005).

O TCS prototípico compreende uma proteína sensora histidina quinase (HK), homodimérica, associada à membrana, contendo um núcleo quinase citoplasmático e um domínio sensor periplasmático ou extracelular; e um regulador de resposta (RR) com um domínio receptor de fosforila conservado, que pode também conter domínios efetores com funções diversas (Gao e Stock, 2009; Zheng *et al.*, 2016). Dentre os domínios efetores encontrados nos reguladores de resposta estão: domínios de ligação ao DNA (como os das famílias OmpR, NarL, LytR e NtrC); domínios de ligação ao RNA (ANTAR); domínios com função enzimática (GGDEF, EAL, CheB, por exemplo), entre outros, apresentando uma variedade quase ilimitada de respostas de saída que podem ser controladas por estas proteínas (Gao e Stock, 2009).

Nestes sistemas, a transdução do sinal ocorre através da fosforilação dependente de ATP de um resíduo histidina de uma HK. Essa fosforilação envolve um domínio helical dimérico da HK que hospeda o resíduo de histidina que é fosforilado, e um domínio catalítico C-terminal que liga o ATP e fosforila o resíduo de histidina. O grupo fosforila é transferido da histidina para um resíduo de aspartato exposto presente no domínio receptor do RR cognato. Esta reação provoca mudanças conformacionais no RR, modulando a atividade de seu respectivo domínio efetor podendo se ligar a regiões regulatórias no DNA, regulando a expressão gênica de genes alvo; modular a atividade enzimática de outro domínio; ou interagir diretamente com uma proteína alvo, resultando em uma resposta apropriada como ilustrado na **Figura 2** (Casino, Rubio e Marina, 2010; Andrade, 2011).

Figura 2. O sistema de dois componentes. Um sinal da própria célula, ou um sinal externo, controla a autofosforilação da histidina quinase e, consequentemente, a ativação do domínio efetor do regulador de resposta, por meio da transferência do grupo fosforila e da mudança da conformação do RR.

A partir do genoma de X. citri 306 são preditos 120 genes que codificam proteínas que participam de TCS (Barakat et al., 2009). Esta alta quantidade também foi observada em outras

cinco linhagens de *Xanthomonas* spp., nas quais o número total de nucleotídeos de genes de TCSs cobria aproximadamente 2,38 % a 3,24 % do genoma (Qian, Han e He, 2008).

Apesar de numerosos genes de TCS estarem presentes em *Xanthomonas* spp., apenas poucos foram investigados. O TCS mais bem caracterizado é o RpfC/RpfG, o qual é implicado na percepção e transdução de sinal do fator difusível de sinal (DSF, *diffusible signal factor*) da percepção de quórum (He *et al.*, 2006; An *et al.*, 2014). Outros TCS, tais como CoIR/CoIS e PdeK/PdeR, também foram reportados no controle da expressão de fatores de virulência em *Xanthomonas* spp. (Yan e Wang, 2011; Yang *et al.*, 2012).

Um dos pares homólogos de CoIRS em *X. citri*, XAC3249/XAC3250, apresentou evidências que este sistema tem um papel valioso na virulência, crescimento *in planta*, formação de biofilme, produção de lipopolissacarídeos, atividade de catalase e resistência ao estresse ambiental, por controlar a expressão de genes de virulência significativos, incluindo *hrpD6*, *hpaF*, o gene *rfbC* de síntese do antígeno-O do LPS, e o gene da catalase *katE* (Yan e Wang, 2011). No entanto, as funções de muitos TCSs em *Xanthomonas* spp. permanecem ainda desconhecidas, motivando este trabalho.

1.6 A proteína reguladora de resposta XAC0834 e a proteína sensora XAC0835.

Entre os sistemas de dois componentes preditos para *X. citri* encontra-se o par XAC0834/XAC0835. XAC0834 é uma proteína reguladora de resposta da família OmpR, que contém os domínios REC, também chamado de domínio fosfoaceptor do tipo CheY e que apresenta o aspartato aceptor de fosforila conservado, no N-terminal (Galperin, 2006); e Trans_reg_C, de proteína reguladora transcricional, no C-terminal e que pode ter um papel na ligação ao DNA (**Figura 3A**). Os reguladores da família OmpR estão envolvidos no controle da tolerância ao estresse ambiental e em funções fisiológicas como a motilidade e virulência, entre outros processos (Itou e Tanaka, 2001). A afinidade de ligação ao DNA das proteínas dessa família depende da fosforilação de um resíduo aspartato no domínio REC que estabiliza a

conformação ativa do regulador (Ames *et. al.*, 1999). XAC0835 é uma proteína sensora, que contém os domínios típicos desta classe de proteínas (**Figura 3B**).

Figura 3. Estrutura esquemática da arquitetura dos domínios de XAC0834 e XAC0835. A - XAC0834 é uma reguladora de resposta composta por 248 aminoácidos, apresentando os domínios conservados REC, receptor de sinal; e Trans_reg_C, um domínio efetor C-terminal, importante para a ligação ao DNA. B – XAC0835 é uma proteína sensora composta por 423 aminoácidos e apresenta os domínios conservados de HATPase_c, onde uma molécula de ATP se liga; HiskA, um domínio fosfoaceptor; e domínios transmembrana representados pelos retângulos azuis. Esquemas extraídos do recurso da web SMART, utilizando a sequência de aminoácidos de cada proteína, disponível em: http://smart.embl.de (Letunic e Bork, 2017).

Na literatura, XAC0834 e XAC0835 já foram descritos como um de três pares parálogos de sistemas ColRS em *X. citri* (Yan e Wang, 2011). No entanto, apenas um destes três pares, XAC3249/XAC3250, foi identificado em um *screening* como necessário para a patogenicidade da cepa XAC 306. Resultados similares foram reportados para *X. campestris* pv. *campestris* 8004, no qual apenas um de três pares do sistema de dois componentes parálogos a ColRS, XC1049/XC1050, estava envolvido na patogenicidade (Zhang *et al.*, 2008).

Em um outro trabalho, o perfil de expressão proteica de *X. citri* foi aferido na presença e ausência de cobre e XAC0834 foi encontrada em mais de uma análise proteica, tendo a sua expressão induzida em presença de cobre na linhagem selvagem (Freitas, 2013).

De acordo com um banco de dados de operons procarióticos, há a predição do gene XAC0834 formar um operon com XAC08322, um gene que codifica uma acil-CoA tioesterase, *tesA*, assim como com a proteína sensora XAC0835 (Mao *et al.*, 2009). Não foram encontrados trabalhos sobre a função de XAC0835 com exceção daqueles que a relacionam a XAC0834.

Devido a potencial importância de XAC0834 em processos relativos à virulência de X. citri, este trabalho buscou analisar mais a fundo os efeitos deste gene na fisiologia desta bactéria.

1.7 A proteína reguladora de resposta XAC3443.

Um outro regulador de resposta, XAC3443, apresenta o domínio característico REC no N-terminal, e um domínio HDOD no C-terminal (**Figura 4**). O domínio HDOD tem a sua função ainda desconhecida, está presente amplamente em diversas bactérias e é encontrado sozinho ou associado a outros domínios importantes para a regulação e sinalização, como os domínios REC, GGDEF e EAL (Liu *et al.*, 2013; Galperin, 2006). O domínio HDOD também pode estar estruturalmente relacionado aos domínios HD-GYP, que são encontrados em fosfodiesterases que degradam o segundo mensageiro c-di-GMP a dois GMP (Andrade *et al.*, 2006; Galperin, 2006).

A sequência de aminoácidos de XAC3443 possui 95 % de identidade com XCC3315, um regulador de resposta presente em *Xanthomonas campestris* pv. *campestris* e que teve sua função descrita na resposta ao estresse geral e envolvimento na expressão de genes responsáveis pela síntese de flagelos (Liu *et al.*, 2013). Tanto em *X. citri* quanto em *X. campestris,* há a presença de um gene que codifica para uma pirofosfatase inorgânica conservada nomeada XAC3442 e XCC3314, situada em proximidade às proteínas XAC3443 e XCC3315, respectivamente, mas que não está predito de formar um operon com o regulador de resposta. Devido a sua alta similaridade e, no contexto genômico, os genes ao redor também serem conservados entre estas diferentes espécies, criou-se a hipótese de que XAC3443 tenha papel semelhante em *X. citri* e, portanto, este regulador de resposta também foi objeto de estudo deste trabalho.

Figura 4. Estrutura esquemática da arquitetura dos domínios de XAC3443. XAC3443 é uma proteína reguladora de resposta composta por 382 aminoácidos, apresentando os domínios REC, receptor de sinal, e HDOD, encontrado em uma superfamília de enzimas com atividade predita ou conhecida de fosfohidrolase. Esquema extraído do recurso da web SMART, utilizando a sequência de aminoácidos de XAC3443, disponível em: http://smart.embl.de (Letunic e Bork, 2017).

2. Objetivos

Este trabalho teve como objetivo a caracterização funcional de proteínas com expressão alterada em linhagens mutantes em genes relacionados ao segundo mensageiro c-di-GMP. Para que esses objetivos fossem atingidos foram utilizadas as seguintes estratégias:

- (I) A partir de dados preliminares de proteômica, escolher como objeto de estudo proteínas cuja expressão era alterada em mutantes relacionados ao segundo mensageiro c-di-GMP.
- (II) Construção dos mutantes por deleção dos genes de interesse e linhagens que superexpressam esses genes.
- (III) Caracterização fenotípica dos mutantes em relação a aspectos ligados a patogenicidade e adaptação.
- (IV) Análise do transcritoma da linhagem superexpressando XAC0834 por RNA-seq, devido à presença de um domínio de ligação ao DNA no regulador de resposta.

3. Materiais e Métodos

3.1 Linhagens, plasmídeos e condições de cultura.

As linhagens e plasmídeos utilizados estão listados na **Tabela 1**. Todas as linhagens de *X*. *citri* são derivadas de XAC 306 (da Silva *et al.*, 2002). Culturas de *Escherichia coli* e *X. citri* foram cultivadas rotineiramente em meio LB (1% de Bacto triptona, 0,5% de extrato de levedura, 1% de NaCl e 1.5% ágar, pH 7.5), a 37°C, para *E. coli*, e 30°C, para *X. citri*. XAC 306 também foi cultivada em meio rico 2xTY (1,6% triptona, 0,2% extrato de levedura, 0,5% NaCl), em meio SB (1 g sacarose, 1 g extrato de levedura, 1 g peptona, 1 g ágar, 0,2 g ácido glutâmico pH 7.0) e em *King's Broth* (20 g/L peptona, 1,5 g/L K₂HPO₄, 15 mL/L glicerol, 1% ágar, 1,5 g/L MgSO₄.7H₂O, 2 mM CaCl₂, pH 7,0), contendo antibióticos específicos, quando necessário, nas concentrações indicadas: ampicilina 100 μg/mL, canamicina 50 μg/mL, gentamicina 10 μg/mL e carbenicilina 100 μg/mL.

Linhagens	Descrição	Referência
Xanthomonas citri		
XAC 306	Linhagem selvagem (WT)	(da Silva <i>et al.,</i> 2002)
ΔΧΑC0834	Deleção de <i>XAC0834</i>	Este trabalho
ΔΧΑC0835	Deleção de <i>XAC0835</i>	Este trabalho
ΔΧΑC3443	Deleção de XAC3443	Este trabalho
ΔΧΑC3657	Deleção de XAC3657	Este trabalho
ΔpilA	Deleção de <i>pilA</i>	(Andrade, 2011)
ΔΧΑC2382	Deleção de <i>XAC2382</i>	(Andrade, 2011)
<i>ΔΧΑC2382</i> /pBRA	Deleção de <i>XAC2382</i> contendo o vetor pBRA, Sp ^R /Sm ^R	Este trabalho
ΔΧΑC0258	Deleção de <i>XAC0258</i>	(Andrade, 2011)
ΔΧΑC1420	Deleção de XAC1420	(Andrade, 2011)
ΔΧΑC1940	Deleção de XAC1940	(Andrade, 2011)
ΔΧΑC0258/ΔΧΑC1420	Duplo nocaute de XAC0258 e XAC1420	(Andrade, 2011)

Tabela 1. Linhagens e plasmídeos utilizados neste trabalho.

Linhagens	Descrição	Referência
ΔΧΑC0258/ΔΧΑC1940	Duplo nocaute de XAC0258 e XAC1940	(Andrade, 2011)
WT/pBRA	XAC306 com pBRA	Este trabalho
WT/pJN105	XAC306 com pJN105	Este trabalho
WT/pXAC0834	XAC306 com pXAC0834	Este trabalho
Δ <i>XAC0834</i> /pJN105	Deleção de <i>XAC0834</i> com pJN105	Este trabalho
A VAC0824/nVAC0824	Complementação da deleção de XAC0834	Ecto trabalho
ДЛАС0034/рлас0834	com pXAC0834	
E. coli		
	supE44 lacU169 (80 lacZM15 hsdR17 recA1	(Hanahan 1082)
υποα	endA11 gyrA96 thi-1 relA1	(Hallallall, 1983)
Vetores	Descrição	Referência
pNPTS138	Replicon ColE1, oriT, npt (Km ^r), sacB	(Tsai e Alley, 2000)
	Vetor de expressão contendo o promotor	
p1N105	araBAD indutível por arabinose e o	(Newman e Fuqua,
ритоз	regulador araC, com origem de replicação	1999)
	pBBR1, Gm ^R	
	Vetor de expressão derivado do pBBR-	
nRPA	RESO (MoBitec), com origem de replicação	(Andrado, 2011)
рыля	pBBR1, promotor BAD indutível por	(Andrade, 2011)
	arabinose e regulador <i>araC,</i> Sp ^R /Sm ^R	
Plasmídeos	Descrição	Referência
	Regiões a montante e a jusante de	Este trabalho
phr ISAAC0034	XAC0834, clonadas em pNPTS138; Km ^R	
nNDTSA <i>YAC0</i> 825	Regiões a montante e a jusante de	Este trabalho
phr ISAAC0055	XAC0835, clonadas em pNPTS138; Km ^R	
nNDTSA <i>YAC2442</i>	Regiões a montante e a jusante de	Este trabalho
μιν ι σαλάς σ445	XAC3443, clonadas em pNPTS138; Km ^R	
nNPT\$4¥4C3657	Regiões a montante e a jusante de	Este trabalho
	XAC3657, clonadas em pNPTS138; Km ^R	
pXAC0834	XAC0834 clonado no vetor pJN105; Gm ^R	Este trabalho

Tabela 1 (Continuação). Linhagens e plasmídeos utilizados neste trabalho.

3.2 Técnicas básicas de biologia molecular.

Isolamento de DNA plasmidial, digestão, reações de polimerase em cadeia (PCR), ligações, transformação, eletroporação de *E. coli* e outras técnicas básicas de biologia molecular foram realizadas de acordo com metodologia padrão, descritas em manuais de referência (Sambrook, Fritsch e Maniatis, 1989; Ausubel *et al.*, 1996) ou de acordo com manuais dos insumos. Clonagens também foram feitas pelo método de Jeong *et al.*, 2012, que dispensa o uso de enzimas de restrição e ligase. Os oligonucleotídeos utilizados neste trabalho estão listados na **Tabela 2.**

Tabela 2. Oligonucleotídeos utilizados neste trabalho.

Oligonucleotídeo	Sequência (5'-3')	Utilização
XAC0834 F1	TCACTTAAGGCCTTGACTAGAGGG TCGACTTCGTCGAGCTGGCCCAG	Deleção de <i>XAC0834</i> Região homóloga ao pNPTS138 + 1000 pb a montante da região de deleção
XAC0834 R1	GGACGTTTCCTTGGTCTGACG	Deleção de XAC0834 Reverso do fragmento a montante
XAC0834 F2	CGTCAGACCAAGGAAACGTCCCAA GATCATCGACAAGCCGTTC	Deleção de XAC0834 Fragmento <i>forward</i> + região homóloga ao fragmento a montante
XAC0834 R2	CAGGATATCTGGATCCACGAATTC GCTAGCAGGATCAGGAACGCATCG ATC	Deleção de XAC0834 Região homóloga ao pNPTS138 + 1000 pb a jusante da região de deleção
XAC0834 F3 XAC0834 R3	CGGCAGTGCGATGTTTTCTTC GCGCAACGACACCGGTTTG	Confirmação da deleção de XAC0834
XAC0835 F1	TCACTTAAGGCCTTGACTAGAGGG TCGACCGCTGCTCGGCCGCTAAAT G	Deleção de XAC0835 Região homóloga ao pNPTS138 + 1000 pb a montante da região de deleção
XAC0835 R1	ACCTGCAGCAGGAAGGCCAGA	Deleção de XAC0835 Reverso do fragmento a montante

Oligonucleotídeo	Sequência (5'-3')	Utilização
XAC0835 F2	TCTGGCCTTCCTGCTGCAGGTAAGC CGGCGTCGGTACGTC	Deleção de XAC0835 Fragmento <i>forward</i> + região homóloga ao fragmento a montante
XAC0835 R2	CAGGATATCTGGATCCACGAATTC GCTAGCCAAGCACGGCATCGTGTT CG	Deleção de XAC0835 Região homóloga ao pNPTS138 + 1000 pb a jusante da região de deleção
XAC0835 F3 XAC0835 R3	CAAGACCGCGCTGGTGCC CTCCTGTCCGGCCATGTGTAC	Confirmação da deleção de XAC0835
XAC3443 F1	TCACTTAAGGCCTTGACTAGAGGG TCGATGCTCCAGGTCGATAAACG	Deleção de XAC3443 Região homóloga ao pNPTS138 + 1000 pb a montante da região de deleção
XAC3443 R1	AACAAACAGAATACGCAAGAC	Deleção de XAC3443 Reverso do fragmento a montante
XAC3443 F2	GTCTTGCGTATTCTGTTTGTTCGAA CAGGCCGACACGTTGCT	Deleção de XAC3443 Fragmento <i>forward</i> + região homóloga ao Fragmento a montante
XAC3443 R2	CAGGATATCTGGATCCACGAATTC GCTAGGCAGCCGATGGTCATATCT CG	Deleção de XAC3443 Região homóloga ao pNPTS138 + 1000 pb a jusante da região de deleção
XAC3443 F3 XAC3443 R3	GCACCGAGCAGCGTAA CGAGATCAACGACATGATCA	Confirmação da deleção de XAC3443
XAC3657 F1	TCACTTAAGGCCTTGACTAGAGGG TCGAAAAACGTGCCGCCACCATCG C	Deleção de XAC3657 Região homóloga ao pNPTS138 + 1000 pb a montante da região de deleção
XAC3657 R1	GACGGCCAGCACGCACGG	Deleção de XAC3657 Reverso do fragmento a montante
XAC3657 F2	CCGTGCGTGCTGGCCGTCGCAGGA GTTCAAGGGCCCGGT	Deleção de XAC3657 Fragmento <i>forward</i> + região homóloga ao fragmento a montante

Tabela 2 (Continuação). Oligonucleotídeos utilizados neste trabalho.

Tabela 2 (Continuação).	Oligonucleotídeos utilizados neste trabalho.

Oligonucleotídeo	Sequência (5'-3')	Utilização	
	CAGGATATCTGGATCCACGAATTC	Deleção de XAC3657	
XAC3657 R2	GCTAGCAACGTGCCGCACATCTTC	Região homóloga ao pNPTS138 + 1000 pb a	
	GC	jusante da região de deleção	
XAC3657 F3	TGCCACTTGCCCGGCACG	. Confirmação da deleção de XAC3657	
XAC3657 R3	CCGTAGCCCGAACGGCAAGAA		
pNPTS_1	GGATCCACGAATTCGCTAG	Linearização do vetor pNPTS138	
pNPTS_2	GCCTTGACTAGAGGGTCGA		
XAC0833-XAC0834 Fwd	CAACCGAAGGTGCTGGAG	Confirmação da organização gênica por RT-	
XAC0833-XAC0834 Rev	TTCGGAGATATTGCGGTTG	PCR entre XAC0833 e XAC0834	
XAC0834-XAC0835 Fwd	ATCGACAAGCCGTTCGAC	Confirmação da organização gênica por RT-	
XAC0834-XAC0835 Rev	AGATACCCGGCCAGCAC	PCR entre XAC0834 e XAC0835	
XAC0834-XAC0834 Fwd	TCGGCGAGTACCTGGAAG	Controle positivo de XAC0834 para a	
XAC0834-XAC0834 Rev	CCGTTGCCCCAGATTTC	confirmação da organização gênica por RT-	
		PCR	
XAC3442-XAC3443 Fwd	TTGGAGAAGGGCAAGTGG	Confirmação da organização gênica por RT-	
XAC3442-XAC3443 Rev	ACAAGGTCGGACGGAAGA	PCR entre XAC3442 e XAC3443 por RT-PCR	
XAC3443-XAC3443 Fwd	CGCAACATCCAGGGCTAT	Controle positivo de XAC3443 para a	
VAC2442 VAC2442 Pou	GACGATCGACAGGCCAAG	confirmação da organização gênica por RT-	
A (65445 A (65445 A (6		PCR	
XAC2398_L_qRT	GGGTCAGGCGCAGCAGAT	aBT-PCB de XAC2398	
XAC2398_R_qRT	GCTCGGCCAGCAAGAGGA		
XAC2609_L_qRT	TGCGGTCGAGCAATTCCA	aBT-PCB de XAC2609	
XAC2609_R_qRT	GCCTGGGCCAACACCTTG		
XAC2613_L_qRT	GAGCCGCCGAAGGGAGAT	aBT-PCB de XAC2613	
XAC2613_R_qRT	CCCCTGCGACAAGCGTCT		
XAC2610_L_qRT	TCAACGAGCAGGGCGAGA CGACCGGCGAACGGTTAC	aPT-DCP do VAC2610	
XAC2610_R_qRT		4K1-FCK 02 XAC2010	
XAC2611_L_qRT	GCCCCTGCTTTCGCTCAA		
XAC2611_R_qRT	GCGGAGGCGTGGGAATATC	ηκι-εςκ αθ ΧΑςζοττ	
XAC2755_L_qRT	GGCAAGCGTGGCCGTATC		
XAC2755_R_qRT AATCCACGCGCACGTCCT		411-FCN UE AAC2/33	

Sequência (5'-3') Oligonucleotídeo Utilização XAC2897_L_qRT GCGTTGAGCGCATCTCCA qRT-PCR de XAC2897 XAC2897_R_qRT CAGTTCGCCAACGCATCG XAC2898_L_qRT CCAAGGCACAGGGGAACG qRT-PCR de XAC2898 XAC2898_R_qRT AGTGCCGAACCGGGACAA XAC2896 L qRT CGCAATCGATCCGTGCAG aRT-PCR de XAC2896 XAC2896_R_qRT CTGGCGCCCCATCATTTC XAC2932_L_qRT TTCGCGCCTGGAATCACA aRT-PCR de XAC2932 XAC2932 R gRT CCCGCCAGGCAATACCAG XAC0905 L gRT CGTGTCGCTGGTGGAACG qRT-PCR de XAC0905 XAC0905_R_qRT TTCCACCTCGGCCACGAT XAC3524_L_qRT CTGCCGGCGCTGGAATAC qRT-PCR de XAC3524 XAC3524_R_qRT CACCTGGCGCAACACGTC XAC0122_L_qRT TCCAACGCATGCCCAATG qRT-PCR de XAC0122 XAC0122_R_qRT TGTACAAGCCGCGCTCCA XAC3099_L_qRT GGCCGACTTGCAGGTGCT qRT-PCR de XAC3099 XAC3099_R_qRT CCTTGAATGCGGCGAAGG XAC1974_L_qRT CCGAGGTGTTCGGCAAGG qRT-PCR de XAC1974 XAC1974_R_qRT TGTCCGAACGCAGGGTCA XAC3383_L_qRT TGTCCAGCGGCTTGTCCA qRT-PCR de XAC3383 XAC3383_R_qRT CATGCGCAGAGCGATTGG XAC3242 L qRT AACAAACGGCCCGCAATG aRT-PCR de XAC3242 XAC3242 R gRT GGCAGCGCCGAATAGTGG pJN105 fwd ACTAGTTCTAGAGCGGCC Linearização do vetor pJN105 pJN105_rev CGCTAGCCCAAAAAAAG

Tabela 2 (Continuação). Oligonucleotídeos utilizados neste trabalho.

3.3 Construção dos mutantes não-polares.

Para a obtenção dos mutantes $\Delta XAC0834$, $\Delta XAC0835$, $\Delta XAC3443$ e $\Delta XAC365$ foi utilizado o vetor suicida pNPTS138. Esse vetor é capaz de se transferir por conjugação e eletroporação em
várias espécies de bactérias a partir de uma doadora com os genes de transferência e apresenta múltiplos sítios de clonagem, marcador de resistência a canamicina e o gene da levansucrase, *sacB*, usado na contra-seleção do segundo evento de recombinação (Tsai e Alley, 2000).

Aproximadamente 1000 pb de DNA das regiões a montante e a jusante do gene de interesse foram amplificadas por PCR e clonadas no pNPTS138 (Figura 5). Após sequenciamento para confirmação das clonagens, os plasmídeos obtidos foram transferidos por eletroporação para XAC306, e os transformantes foram selecionados inicialmente em meio com canamicina. Colônias resistentes indicaram que a construção se integrou no cromossomo, já que o pNPTS não se replica em *Xanthomonas* spp. Essas colônias foram inoculadas em meio líquido sem antibióticos e, após crescimento, plaqueadas em meio LB com 5% de sacarose para selecionar eventos de segunda recombinação, que significam que o plasmídeo foi excisado. A deleção foi confirmada por meio de análises de PCR e por crescimento em placas de LB acrescidas de canamicina.

3.4 Ensaios de motilidade sliding.

Para a caracterização fenotípica, foram feitos ensaios de motilidade com 5 réplicas biológicas das cepas estudadas. Nesse ensaio, foi utilizado 3 μL de amostras de bactérias de cada cepa, crescidas até atingirem uma D.O_{600nm} 0.3, em meio 2xTY, sendo então crescidas no centro de uma placa de Petri com 25 mL de meio SB 0,5% ágar (1 g/L sacarose, 1 g/L extrato de levedura, 1 g/L peptona, 1 g/L ágar, 0,2 g/L ácido glutâmico, pH 7.0) sendo incubadas por 3 dias a 30°C, com o meio de cultura virado para baixo em superfície plana. Após esse período, foram tiradas fotos das placas e as áreas dos halos das colônias foram medidas com o uso do software ImageJ (Rueden, 2017).

3.5 Ensaios de motilidade twitching.

Os ensaios de motilidade *twitching* foram feitos com 10 réplicas biológicas das cepas estudadas. Nesse ensaio, bactérias previamente crescidas em uma placa de Petri com meio LB por 2 dias a 30°C, foram tocadas com ponteiras estéreis de forma que a ponta ficasse coberta de bactérias, sendo estas ponteiras então utilizadas para perfurar o meio *King's Broth* (20 g/L peptona, 1,5 g/L K₂HPO₄, 15 mL/L glicerol, 1% ágar, 1,5 g/L MgSO₄.7H₂O, 2 mM CaCl₂, pH 7,0, acrescido de 0,2% de arabinose e 10 µg/mL de gentamicina, quando necessário) de forma a atingir o fundo das placas por uma vez. Após 5 dias a 30°C, os meios de cultura foram retirados das placas com uma espátula. As bactérias aderidas no fundo das placas foram então coradas por 20 minutos com uma solução de cristal violeta 0,2% (Sigma-Aldrich), e posteriormente a solução não aderida às bactérias foi retirada com uma lavagem suave com água. As placas foram fotografadas e as áreas da movimentação das bactérias foram medidas com o software ImageJ (Rueden, 2017).

3.6 Ensaios de motilidade swimming.

Todas as linhagens de interesse foram cultivadas em meio LB, acrescido de gentamicina quando necessário, por 48 h a 30°C e, em seguida, colônias isoladas foram inoculadas em meio

2xTY e deixadas crescendo overnight a 30° C, 200 rpm. 1 mL do pré-inóculo de cada cultura foi então utilizado em 10 mL de 2xTY e as bactérias foram crescidas até atingirem a D.O _{600nm} = 3,0. Em seguida, 3µL de cada uma das culturas foram inoculadas em placas de Petri com meio SB 0,3%, acrescido de 10 µg/mL gentamicina e 0,2 % arabinose, quando necessário, e incubadas por 96 h a 30°C protegidas por sacos plásticos para prevenir a desidratação das mesmas. O crescimento dos halos bacterianos foi avaliado nos dias 2, 3 e 4 por meio de fotos analisadas com o auxílio do software ImageJ. Os ensaios foram feitos em triplicatas biológicas.

3.7 Ensaio para produção de goma xantana.

Todas as linhagens de interesse foram cultivadas em meio LB por 48 h a 30°C e transferidas para 10 mL de meio 2xTY por 16 h a 30°C, acrescido de gentamicina quando necessário, e com agitação a 200 rpm. A D.O._{600nm} foi ajustada para 0,3 (10⁸ CFU/mL) em um volume final de 2,5 mL. O inóculo foi transferido para frascos Erlenmeyer de 250 mL contendo 100 mL de meio para goma (25 g/L glicose, 3 g/L extrato de levedura, 2 g/L K₂PO₄, 0,1 g/L MgSO₄.7H₂O) e incubado a 30° C, 200 rpm por 96 h (Shu e Yang, 1990; Oliveira, *et al.* 2018).

As células das culturas de 96 h foram centrifugadas a 9,666 X g por 40 min a 4°C. Os pellets bacterianos foram suspensos em 1 mL de água milli-Q, transferidos para um béquer pesado previamente e pesados novamente após 24 h a 70°C. Os sobrenadantes foram transferidos para béquers de 400 mL. A goma foi recuperada dos sobrenadantes pela adição de 4 g de KCl em cada béquer, seguido de agitação em temperatura ambiente por 15 min. 200 mL de isopropanol frio foi adicionado e a goma xantana de cada béquer foi removida para placas de petri de vidro pesadas previamente com o auxílio de uma vareta de vidro e uma peneira. Após 72 h a 37°C as placas de Petri foram pesadas novamente e a quantidade de goma seca foi calculada. Por fim, foi calculada a razão da quantidade de mg de goma xantana produzida por mg de massa celular. Todas as extrações foram feitas em triplicatas biológicas.

3.8 Ensaios de iniciação de biofilme para análise qualitativa e quantitativa.

Para a análise qualitativa, culturas de XAC 306 foram crescidas em meio 2xTY até atingirem a fase estacionária, tiveram sua D.O₆₀₀ nm medida e foram diluídas para uma densidade final de 1,0. 3 mL de cada uma das culturas foram adicionados a tubos de ensaio de poliestireno ou vidro borossilicato e deixados numa estufa a 30°C por 3 dias, sem agitação. Após esse período, o meio de cultura foi retirado, os tubos foram suavemente lavados com água destilada, e as bactérias aderidas foram coradas com uma solução de cristal violeta 0,2% por 20 minutos. O cristal violeta não aderido ao biofilme foi retirado por uma lavagem suave com água. Fotos dos tubos foram tiradas e a formação de biofilme foi avaliada.

Para a análise quantitativa, culturas em fase estacionária foram diluídas em meio 2xTY a uma DO_{600nm} = 1,0, e 1 mL de cada cultura foi distribuído por poço em placas de 24 poços, em 5 replicatas técnicas, deixadas sem agitação por 4 dias numa estufa a 30°C. Após esse período o meio foi descartado, os poços foram lavados gentilmente com água para remover as células não aderidas e o biofilme foi corado por uma solução de cristal violeta 0,2% por 20 minutos à temperatura ambiente. O corante foi então descartado e os poços lavados com água para retirar o excedente de corante. Em seguida, as células do biofilme aderido aos poços foram lisadas com etanol 70%. A solução coletada teve sua absorbância medida a 550 nm, sendo esta medida proporcional ao número de células aderidas.

3.9 Estudo da organização de genes em operon.

Para verificar se os genes XAC0834 e XAC0835 encontram-se em *operon*, foram realizados ensaios de transcrição reversa seguidos de PCR (RT-PCR). Após a extração de RNA total de XAC 306 com reagente Trizol (Invitrogen), o RNA foi tratado com DNase I (RQ-DNase I, Promega), e a síntese de DNA complementar (cDNA) feita. O RNA foi transcrito reversamente pela enzima Superscript III (Invitrogen) ou Improm II (Promega), segundo protocolo do fabricante. O cDNA foi usado como molde para PCR com oligonucleotídeos específicos para a amplificação da região

intergênica, o que permitiu confirmar a organização dos genes. O DNA genômico de XAC 306 foi utilizado como controle positivo e o RNA como controle negativo.

3.10 qRT-PCR.

Foram realizadas análises da expressão de genes através de qRT-PCR, permitindo estimar a quantidade relativa de mRNA de um gene específico nas células em relação a um gene normalizador, cuja expressão não varia nas condições de ensaio. As cepas de interesse foram crescidas em meio de cultura 2xTY, a 30°C, com agitação constante a 200 rpm. O RNA total foi extraído com o reagente Trizol (Invitrogen), e tratado com DNAse I (RQ-DNAse I, Promega), conforme as instruções dos fabricantes. O RNA extraído foi utilizado como molde para a síntese de cDNA com a enzima Revert Aid Premium (Thermo) e primers aleatórios. O cDNA foi então amplificado com SYBR Green PCR Master Mix (Applied Biosystems) e oligonucleotídeos específicos (1,6 pmoles de cada, num volume final de 20 μL) no equipamento 7300 Real Time PCR System (Applied Biosystems), utilizando o seguinte programa: 60°C por 2 minutos, 95°C por 10 minutos e 40 ciclos de 95°C por 15 segundos, terminando com 60°C por 1 minuto. As taxas de expressão relativas foram calculadas de acordo com o método 2^{-ΔΔCT} (Livak e Schmittgen, 2001), utilizando o gene 16S rRNA como normalizador.

3.11 Análise do transcritoma.

Cepas de interesse foram crescidas em 2xTY acrescido de 0,2% arabinose e 10 µg/mL de gentamicina a 30°C até atingirem uma DO_{600nm} de 1.0, fase exponencial, duas replicatas biológicas foram analisadas para cada linhagem. RNA protect (Qiagen) foi adicionado às células extraídas e o RNA total foi isolado usando o RNeasy minikit (Qiagen). A qualidade do RNA foi analisada usando Bioanalyzer. O mRNA foi enriquecido usando o kit Ribo-Zero rRNA Removal (*Gram-Negative Bacteria*) (Illumina), e a depleção de rRNA confirmada por Bioanalyzer. Bibliotecas *paired-ends* foram construídas usando o kit TruSeq RNA Library Prep Kit v2. O tamanho médio do fragmento foi determinado por Bioanalyzer, e a concentração de cada

biblioteca foi determinada usando o KAPA Library Quantification kit (KapaBiosystems), de acordo com as instruções do fabricante. Todas as amostras foram sequenciadas no Illumina MiSeq.

3.12 Quantificação da expressão gênica.

Foi feito o *demultiplexing* utilizando-se os índices das amostras inseridas durante a construção da biblioteca para que as *reads* fossem agrupadas para cada amostra. A qualidade das *reads* foi averiguada usando FastQC e a extremidade 3' de cada *read* foi aparada usando FASTX-Toolkit. Após esse passo, as sequências foram mapeadas e contadas utilizando-se o software EDGE-PRO (Magoc, Wood e Salzberg, 2013). O pacote do R, DESeq2 (Love, Huber e Anders, 2014) foi usado para análise da expressão diferencial. Os genes foram classificados como diferencialmente expressos quando apresentaram uma mudança *log²-fold* maior que 1 ou menor que -1 e quando o valor de P corrigido pelo método de Benjamini-Hochberg, P-adj, foi menor que 0,05.

3.13 Curvas de crescimento.

As curvas de crescimento das cepas de interesse foram feitas crescendo-as no meio 2xTY, ou no meio SB, acrescidos de acrescido de 0,2% de arabinose e 10 µg/mL de gentamicina, quando necessário, em placas de 48 poços, com 5 réplicatas técnicas a 30°C no Spectramax Paradigm, com agitação constante e leitura a cada 15 minutos, durante 48 horas.

3.14 Eletroforese bidimensional.

Triplicatas biológicas das linhagens WT, $\Delta XAC2382$, $\Delta XAC0258$, $\Delta XAC1420$, $\Delta XAC1940$, $\Delta XAC0258/\Delta XAC1420$ e $\Delta XAC0258/\Delta XAC1940$ foram crescidas a 30°C, em agitação a 240 rpm, em 50 mL de meio 2xTY, tendo suas proteínas extraídas na DO_{600nm} 1,0. Para a extração foram feitas duas lavagens em tampão Tris-HCl pH 8,0 100 mM e 10 mM, nessa ordem, e suspensão na solução de lise (8 M ureia, 2 M tioureia, 2% CHAPS, 40 mM DTT, 2% Pharmalyte), seguida de lise por ultrassom em quatro ciclos de 20 segundos em banho de gelo. As proteínas no extrato foram dosadas pelo método de Bradford (Bradford, 1976). 350 µg de proteínas em solução de reidratação (8 M ureia, 2 M tioureia, 2% CHAPS, 40 mM DTT, 2% Pharmalyte, 10% glicerol, azul de bromofenol) num volume final de 350 µL foram incubadas com as fitas de isoeletrofocalização de 18 cm e gradiente de pH de 3 a 10 não linear (GE Healthcare) por 16 horas em temperatura ambiente. Essas fitas com as amostras foram submetidas à focalização isoelétrica no aparelho IPGphor III (GE Healthcare) em um gradiente de voltagem: aumento linear de 0 para 500 V por 500 V/h, seguido de um aumento para 1000 V por 1000 V/h, e uma fase final de 8000 V por 32000 V/h. Após a focalização, as fitas foram equilibradas por 15 minutos em solução de equilíbrio A (6 M ureia, 29,3% glicerol, 2% SDS, 65 mM DTT) e mais 15 minutos em solução de equilíbrio B (6 M ureia, 29,3% glicerol, 2% SDS, 135 mM iodoacetamida, azul de bromofenol). Dessa forma, as proteínas foram separadas pelo ponto isoelétrico (pl) sendo, em seguida, separadas pelo seu peso molecular em géis desnaturantes de poliacrilamida 12% (SDS-PAGE). Após 17 horas de corrida a 10W, os géis foram fixados em 40% etanol, 10% ácido acético, corados com uma solução de azul brilhante de coomassie coloidal (0,08% azul brilhante de coomassie, 1,6% H₃HPO₄, 600 mM (NH₄)₂SO₄ e 20% metanol) e descorados com água destilada para em seguida serem digitalizados no ImageScanner III (GE Healthcare).

4. Resultados e Discussão

4.1 Análise proteômica.

X. citri possui em seu proteoma 18 proteínas que contém o domínio GGDEF, 11 proteínas que contém ambos os domínios GGDEF e EAL, 3 proteínas que contém o domínio EAL e 3 proteínas que contém o domínio HD-GYP, o que indica a presença de uma via sinalizadora de c-di-GMP complexa (Teixeira *et al.*, 2018). Com o objetivo de buscar novos alvos proteicos regulados pelos níveis intracelulares de c-di-GMP, foi feita inicialmente uma análise proteômica por meio de eletroforese bidimensional com o extrato proteico de mutantes de diguanilato ciclases preditas. Os mutantes nos genes das proteínas XAC0258, XAC1420, XAC1940 e XAC2382 foram escolhidos por estas apresentarem o domínio GGDEF, característico de diguanilato ciclases (**Tabela 3**).

Além do domínio GGDEF, a proteína XAC0258 também apresenta o domínio c-NMP, um domínio de ligação a nucleotídeos-monofosfato cíclicos; a proteína XAC1420 também apresenta um domínio HDOD, encontrado em uma superfamília de enzimas com atividade predita ou conhecida de fosfohidrolase, descrito na **Introdução**; a proteína XAC1940 também apresenta os domínios: β-propeller, que indica uma estrutura caracterizada por 4 a 8 folhas beta pregueadas arranjadas em forma toróide em volta de um eixo central, e o domínio YYY que acredita-se ser importante na transdução de sinal bacteriano, entretanto a exata função desse domínio proteico não é conhecida; e a proteína XAC2382 também apresenta o domínio HAMP, encontrado em proteínas sensoras bacterianas e de quimiotaxia (Hulko *et al.*, 2006). A representação esquemática destes domínios está indicada na **Tabela 3**.

Durante o doutorado do aluno Maxuel de Oliveira Andrade, foram feitos ensaios para a caracterização fenotípica dos mutantes e, comparando com o fenótipo da linhagem selvagem e a concentração intracelular de c-di-GMP foi inferida indiretamente (Andrade, 2011). O fenótipo observado nesses mutantes sugeriu que havia variação dos níveis intracelulares de c-di-GMP,

promovendo características específicas como alta ou baixa motilidade em diferentes meios de cultura, justificando as suas escolhas para as análises de seus proteomas (**Tabela 3**) (Andrade, 2011). Um exemplo do perfil dos géis obtidos está indicado na **Figura 6**.

Nas análises proteômicas dos mutantes estudados, indicados na **Tabela 3**, foram encontradas dezenas de proteínas diferencialmente expressas, sendo que algumas destas proteínas foram encontradas mais de uma vez em diferentes mutantes. Todas as proteínas encontradas diferencialmente expressas nessas análises estão indicadas no **APÊNDICE A**. Estas proteínas estão indicadas na **Tabela 4** e seus genes vieram a ser alvo de interesse para a validação da expressão por qRT-PCR (**Figura 7**). Todos os genes que foram analisados por qRT-PCR para confirmar a expressão diferencial encontrada nas análises proteômicas estão indicados no **APÊNDICE B**.

Figura 6. Extrato proteico total de um ensaio de WT/pBRA (azul) e ΔXAC2382/pBRA (vermelho) submetidos à eletroforese bidimensional. Os spots diferencialmente expressos numerados de 1 a 65, foram detectados a olho nu e confirmados como diferencialmente expressos estatisticamente pelo testet (p<0,03) do programa Delta 2D (Decodon). As proteínas diferencialmente expressas foram identificadas por espectrometria de massa. **Tabela 3.** Mutantes utilizados para a análise proteômica. Estão indicados os domínios das proteínas deletadas e seus perfis de motilidade e concentrações preditas de c-di-GMP baseadas em fenótipos observados no meio SB 0,5 % (Andrade, 2011).

Cepa mutante/Domínios	Motilidade em relação ao selvagem XAC306	Concentração intracelular predita de c-di-GMP	
۵xAC0258 C-NMPGGDEF	Aumentada	Baixa	
۵xac1420 HDOD GGDEF	Aumentada	Baixa	
۵хас1940 D-PROPELLER (۲۲) GGDEF	Reduzida	Alta	
AXAC2382	Aumentada	Baixa	
∆XAC0258/∆XAC1420	Reduzida	Alta	
ΔΧΑC0258/ΔΧΑC1940	Aumentada	Baixa	

Tabela 4. Proteínas identificadas em diferentes cepas e a sua razão quando comparadas com a cepa selvagem. As proteínas que foram estudadas mais a fundo neste trabalho estão destacadas em negrito.

Proteína	Gene #	WT/ ΔXAC0258/ΔXAC1420	WT/ Δ <i>XAC2382</i> /pBRA	WT/ ΔXAC0258/ΔXAC1940	WT/Δ <i>XAC1940</i>
Isocitrate dehydrogenase	XAC3835	3,85		0,60	
Oligopeptidase B	XAC0631	13,23	1,42		
Glycerol kinase	XAC0358	0,49		0,61	
Glucose-6-phosphate 1-dehydrogenase	XAC2071	0,58		0,43	
Hypothetical protein	XAC3657		0,12	0,49	
GTP-binding elongation factor protein	XAC1004	2,42	0,79		
Chain A, Alpha-Amino Acid Ester Hydrolase Labeled with Selenomethionine (glutaryl-7-ACA acylase precursor)	XAC2341	6,01	1,17		
Fructose-bisphosphate aldolase	XAC3344	0,68	0,46		
Hypothetical protein	XAC0019	0,11	0,06		
Response regulator	XAC3443	0,19	2,64		
UTP-glucose-1-phosphate uridylyltransferase	XAC2292	0,59	0,61		
Peptidyl-prolyl cis-trans isomerase	XAC0865	0,70	0,38		
Two-component system regulatory protein	XAC0834	0,55			0,47

Figura 7: Análise por qRT-PCR dos níveis relativos de mRNA das proteínas diferencialmente expressas. Diferenças de expressão nos genes que codificam proteínas encontradas diferencialmente expressas em mais de uma análise proteômica em mutantes de diguanilato ciclases. O ensaio de qRT-PCR foi realizado em triplicatas técnicas, a partir de RNA total extraído de culturas com DO_{600nm} 1,0 em 2xTY, à 30 °C e 200 rpm. Foram usadas as linhagens WT, ΔXAC0258, ΔXAC1420, ΔXAC1940 e ΔXAC0258/ΔXAC1420 e a expressão dos genes XAC0834, XAC3443 e XAC3657 foi analisada em cada uma delas.

A proteína reguladora de resposta XAC0834, descrita na **Introdução**, foi encontrada na análise proteômica do duplo nocaute Δ*XAC0258/ΔXAC1420* 1,8 vezes mais expressa em relação ao selvagem, e também na análise proteômica de Δ*XAC1940*, sendo 2,1 vezes mais expressa no mutante em relação ao selvagem. Esses dados iniciais sugerem que XAC0834 possa estar sendo regulada pelos níveis de c-di-GMP, ou ainda que tenha um papel sobre o metabolismo deste nucleotídeo, já que foi encontrada mais expressa em ambos os mutantes que possuem fenótipos de alto c-di-GMP.

Já no qRT-PCR, não foi encontrada variação nos níveis de mRNA no gene que codifica XAC0834 em nenhuma das cepas testadas, mesmo em Δ*XAC1940* e Δ*XAC0258*/Δ*XAC1420*, onde inicialmente havia sido encontrada a expressão diferencial no proteoma, apresentando valores menores ou iguais ao limite de 2 vezes em relação ao selvagem, o que pode indicar que a regulação da concentração de XAC0834 ocorra pós-transcricionalmente.

Outra proteína reguladora de resposta, XAC3443, foi encontrada nos proteomas de $\Delta XAC2382$ (2,65 vezes menos expressa no mutante em relação ao selvagem) e do duplo nocaute $\Delta XAC0258/\Delta XAC1420$ (5,19 vezes mais expressa no duplo nocaute). De acordo com os fenótipos descritos na **Tabela 3**, XAC3443 foi encontrada mais expressa em um mutante que apresenta fenótipo de altos níveis de c-di-GMP, e menos expressa em um mutante com baixos níveis de c-di-GMP. No qRT-PCR realizado para verificar a expressão de XAC3443 nas cepas $\Delta XAC0258$, $\Delta XAC1420$, $\Delta XAC1940$ e $\Delta XAC0258/\Delta XAC1420$, não foi encontrada expressão diferencial em relação ao WT, sugerindo que a diferença de expressão encontrada nos proteomas ocorra também no nível pós-transcricional.

Além destas, a proteína hipotética XAC3657, predita de ser uma proteína de membrana, foi encontrada 2,5 vezes mais expressa no proteoma de $\Delta XAC2382$ e 2,03 vezes mais expressa no proteoma do duplo nocaute $\Delta XAC0258/\Delta XAC1940$, sendo que ambos mutantes apresentam fenótipo de baixo c-di-GMP. Analisando a expressão de XAC3657 por qRT-PCR foi observado que XAC3657 é mais expressa, de 2 a 3 vezes mais, em todas as cepas testadas: $\Delta XAC0258$ e $\Delta XAC1420$ que apresentam fenótipo de baixo c-di-GMP, e em $\Delta XAC1940$ e $\Delta XAC0258/\Delta XAC1420$, que apresentam fenótipos de alto c-di-GMP. Em razão disso, esta proteína também foi escolhida como alvo para caracterização funcional, já que a expressão do gene que a codifica poderia estar sendo diretamente influenciada por este segundo mensageiro a nível transcricional.

4.2 Estudo da organização gênica.

Como o regulador de resposta XAC0834 foi encontrado diferencialmente expresso na análise proteômica, e o gene que o codifica está localizado ao lado do gene para a proteína sensora *XAC0835*, a organização gênica destes genes foi estudada mais a fundo. Para verificar se os genes *XAC0834* e *XAC0835* estavam expressos em um operon, o que reforçaria a hipótese de que ambos atuariam como um sistema de dois componentes, e teriam, portanto, suas expressões gênicas correguladas, foram feitas análises de bioinformática e RT-PCR.

De acordo com a ferramenta Prokaryotic Operon Database (ProOpDB), um preditor de operons, os genes *XAC0834* e *XAC0835* estariam formando um operon junto com XAC0833, um gene que codifica para uma acil-coA tioesterase, denominada *tesA*. A mesma análise foi feita para os genes que codificam a proteína reguladora de resposta XAC3443 e a proteína hipotética XAC3657, e nestas análises não foram encontrados genes que poderiam ser transcritos em operon (**Figura 8**).

Figura 8. Predição de formação de operon de acordo com o banco de dados ProOpDB. A- O par do sistema de dois componentes *XAC0834-XAC0835* forma um operon com *XAC0833, tesA*. **B e C** – *XAC3443* e *XAC3657* não apresentam operons preditos. Esquemas adaptados da predição de operons do banco de dados ProOpDB (Taboada *et al.,* 2011).

Para confirmar a predição por bioinformática, foi analisada a co-transcrição dos reguladores de resposta XAC0834 e XAC3443 por RT-PCR. Inicialmente, uma PCR foi realizada

utilizando como molde o cDNA obtido pela transcrição reversa do RNA extraído de culturas de *X. citri* durante a fase exponencial de crescimento. Os pares de oligonucleotídeos utilizados estão indicados na **Tabela 2**, sendo estes desenhados de forma a hibridizar com as regiões codificadoras e intergênicas dos genes de interesse. Desta forma, com a amplificação do fragmento contendo a região intergênica é possível afirmar que os genes são transcritos no mesmo mRNA, compartilhando o mesmo promotor e sendo, portanto, co-transcritos a partir de um operon (**Figura 9**).

Utilizando o RNA como controle negativo, foi observado que não houve contaminação das amostras com DNA genômico residual. Isto indica que a presença de fragmentos dos tamanhos esperados na amplificação dos cDNAs nas regiões intergênicas dos genes indicados na **Figura 9** confirma a predição de bioinformática de que os genes *XAC0833*, *XAC0834* e *XAC0835* constituem um operon.

Também foi confirmado que o gene que codifica uma pirofosfatase inorgânica, *XAC3442*, é expresso conjuntamente com o regulador de resposta *XAC3443*, o que não havia sido previsto pelo ProOpDB, provavelmente por este banco de dados usar modelos treinados em um conjunto de operons definidos experimentalmente, sendo mais preciso para a predição em genomas bem caracterizados, como os de *E. coli* e *B. subitilis* (Taboada *et al.*, 2011).

Figura 9. *XAC0833/XAC0834/XAC0835* e *XAC3442/XAC3443* constituem operons. A – Representações esquemáticas do contexto genômico dos genes *XAC0833, XAC0834, XAC0835, XAC3442* e *XAC3443* com seus respectivos tamanhos de genes e regiões intergênicas. Em vermelho estão destacados os tamanhos esperados dos fragmentos amplificados da RT-PCR caso ocorra uma fita única de mRNA para a expressão dos genes indicados. B – Gel de agarose 0,8 % obtido com os produtos de RT-PCR. Estão indicados o marcador com os padrões de peso molecular, o DNA genômico (gDNA) utilizado como controle positivo, o RNA como controle negativo, e o cDNA sintetizado a partir de oligonucleotídeos específicos. As amostras de gDNA e RNA foram extraídas na fase exponencial de crescimento.

4.3 Nomenclatura de XAC0834.

Nos bancos de dados de sequenciamento de DNA, *XAC0834* está nomeada como *colR* no genoma de *X. citri*. Entretanto, 2 outros genes possuem o mesmo nome, *XAC1221* e *XAC3250*. O mesmo foi encontrado para *XAC0835*, cujo nome nos bancos de dados é *colS*, mas este é compartilhado com outros 2 genes, *XAC1222* e *XAC3249*.

Como já descrito na **Introdução**, em um trabalho que analisou se estes pares de genes são importantes para a virulência foi verificado que o par XAC3249/XAC3250 apresentava maior identidade entre as sequências de aminoácidos com os pares do sistema de dois componentes CoIR/CoIS já descritos em outros organismos evidenciando aspectos relacionados a patogenicidade, como a colonização da raiz no hospedeiro (Yan e Wang, 2011).

Para verificar o grau de similaridade entre as sequências das proteínas codificadas pelos genes XAC0834/XAC0835, XAC1221/XAC1222 e XAC3249/XAC3250, foi feito um alinhamento de sequências. Os resultados destas análises e o aspartato conservado relacionado diretamente com a função do domínio REC estão indicados nas **Figuras 10** e **11**.

Também foi analisada a arquitetura modular das proteínas de interesse e os domínios obtidos estão indicados na Figura 12.

xac:XAC0834	MFHKAEDRGKSMRQTKETSGL	VLVVEDNRNISEMIGEYLEGRGFEVDYAQDGLDGYRLAA	60
xac:XAC1221	MR	LLVIEDNRNMVANLFDYFEARGHTLDAAPDGVTGLHLAT	41
xac:XAC3250	MR	ILVIEDNSDIAANLGDYLEDRGHTVDFAADGVTGLHLAV	41
		:**:*** :: : :*:* **. :* * **: * :**.	
	#		
xac:XAC0834	ENSYDVVVLDLMLPRLDGIEV	CRRLRNDARKSTPVLMLTARDTLDDKLTGLGFGADDYLT	120
xac:XAC1221	TOHYDALILDWMMPRMDGPEV	LRRLREOHOSELPVIMLTARDELPDKIAGFRAGADDYLT	101
xac:XAC3250	VHEFDAIVLDLNLPGMDGIEV	CRKLRNEARKOTPVLMLTARDSLDNKLAGFDSGADDYLI	101
	* * * * * * * * * * * * *	* ** ** **** * * * * * * *	
xac:XAC0834	KPFAIOELEARLRALIRRERR	OVGSEVLKVADLVLDPVSMRATRAGTELOLSPIGLRLLT	180
xac:XAC1221	KPFALPELEVRIEALLARAHG	RRRGKLLOVADLRLDLATLEATRAGOVLHLYPACRKLLE	161
xac:XAC3250	KPFALOEVEVRLNAL SRRGKG	VH-TRVLETGDLEYNLDTLEVRRRGKLLOLNPTALKILO	160
	**** * * * ** *		
xac:XAC0834	ILMRESPRVVTROEIEREIWG	NGLPDSDTLRSHLYNLRKIIDKPFDRPLLHTVOSAGYRI	240
xac:XAC1221	VLMOASPAAVTRORLEOSLWG	DDPPDGDMLRSHIYELRRSVDGPFA0KLIHTLPRLGYRL	221
xac:XAC3250	ALMEASPAVVTROELETRVWG	EELPDSDSLRVHIHGLRAVVDKPEDVPMIOTRHGIGYRI	220
	** ** **** * **	** * ** * . ** .* *** ***	
xac:XAC0834	ADIAOPMA	248	
xac:XAC1221	AOLDAADAPGAGDCSDV	238	
xac:XAC3250	ASPDA	225	
	*		

Figura 10. Alinhamento das sequências de aminoácidos das proteínas previamente denominadas ColR. O programa ClustalW foi usado para o alinhamento das sequências. Os asteriscos abaixo das sequências indicam posições que apresentam um resíduo completamente conservado; os dois pontos indicam a conservação entre grupos com propriedades fortemente similares; e os pontos indicam a conservação entre grupos com propriedades fracamente similares. As cores indicam características físico-químicas dos aminoácidos, por exemplo: azul, ácido e magenta, básico. # - Aspartato conservado nos domínios REC em diferentes proteínas e relacionado diretamente com a função da mesma (Thompson *et al.*, 1994).

MSKORPLGRRVLVWLFGYTLLMTLAVFGTA0YLHE-RAEHGVWRSLLNSELDSILERSL0 xac:XAC1222 59 xac:XAC0835 MPHGLPRKIR-LAFLLQVAL-ASLAL-VLAGYLVSFVIKYSLVRTVLADEAVHFWQMQKS 57 xac:XAC3249 -----MNRNIDAFAQRFYSDPMR 18 . xac:XAC1222 DPDYRWODSDTLRLYRVD---DVARTPPVLRTLHPGLHDGLEIAGROSAVMVRDTAHAGR 116 xac:XAC0835 VPDNRPPNTRNIOGYFSPAGTAAEAAPAALRHLSPGFSEVAA---A-DALVYVDORPEGR 113 xac:XAC3249 NPDLPL---QQMRGRVVK-----SDKFEALRREQPEWYQLPD---GIHTITGV--DESGT 65 .** ** xac:XAC1222 LALVLDITDFEALEKFLTRWMLA-----AGIALIGITLLMGTYAM 156 LYLVFPR-----SRAAHLTWWFGVVPAI-----VVLVA-----IYGVSWFTY xac:XAC0835 150 xac:XAC3249 TYSYKLA-----VRKTPSEWFFLAYDMTQALKGEIQLKRTLVLSVLVFSGFSLLIGWWSA 120 * : . ---ARLVRPLVELARDIGALRPEORAOOIA----VGPOGSAELYVIADALNDYLERNSO xac:XAC1222 208 RVSKRLVSPISWLARRVSHWDPRNPDVDELAPERLPAE-LQGETRQLAAALHALGLRVSE xac:XAC0835 209 xac:XAC3249 ---SKVMRPVSDLAARLRAYRGGTSQ----PKPLAAHFPDDEVGQLAEALDDYSARLTE 172 ... *: ** : * ** . * xac:XAC1222 FVDRERAFIDSASHELRTPIAVIGNAVELALDOPGTPPAVRHOLORIAOTSTSVEOLITL 268 HVARERNFTRDASHELRTPLTVIRVASDMALADDELSARTQRSLRRIQRAGHDMEAVIDA xac:XAC0835 269 xac:XAC3249 VVQRDREFNADVSHELRTPLAVIRGATELLLTKPNLDEKVLQRLQRIQRAEQQCSDLIGS 232 ****** ** * * * * * . : *:** :: LLVLAKDPGRLVRSSDALRLDQLLPDIVADHTHLCADKDLQLVVAPLPPCSVVAPVAIVQ xac:XAC1222 328 FLILAREAEID-PQSENFDVAELASEELQSARELLGDKPVSLRMVGDRSLQMFAPPRVMR xac:XAC0835 328 xac:XAC3249 LLLLSRNERGO-G---SSNVAKVAEOLIDSHRAOLGGKPLELVLEGERDLVIDAPESALS 288 : ** ...* :..* : * * * 1 11 1 1 1 xac:XAC1222 TAIGNLLRNAIENSDRGIIRISLSAPGVVCIADPGHGMTPEEISAIYTRLARG---NVRQ 385 xac:XAC0835 VVLSNLLRNACAYTDTGSIEVEVTHDRI-VVRDTGIGMSEEARARAFEPFFRA-DPTRPQ 386 VALGNLIGNAVKYTODGOVRVRVLGDAV-EVIDSGPGLSEEDAAKLFORGYRGTHAGHSO xac:XAC3249 347**: ** ... * ... : . . * * *... * . . . xac:XAC1222 GSGIGLELIGRLCEHLGWHLQLDSNAGQGTVATLDLSGATATES 429 xac:XAC0835 GTGLGLSIVRRLCDRFGWRIELQSEAGVGTSVAVVVA------423 xac:XAC3249 GGGIGLSIVSRLCDLYGWRVSVRPGQQRGVVATLAFHR-----385 * *:**.:: ***: **:::: *. .:: .

Figura 11. Alinhamento das sequências de aminoácidos das proteínas previamente denominadas ColS. O programa ClustalW foi usado para o alinhamento das sequências. Os asteriscos abaixo das sequências indicam posições que apresentam um resíduo completamente conservado; os dois pontos indicam a conservação entre grupos com propriedades fortemente similares; e os pontos indicam a conservação entre grupos com propriedades fracamente similares. As cores indicam características físico-químicas dos aminoácidos, por exemplo: azul, ácido e magenta, básico (Thompson *et al.*, 1994).

Figura 12. Domínios presentes nas proteínas previamente denominadas ColR/ColS. A – Domínios das proteínas XAC0834 e XAC0835; B – Domínios das proteínas XAC1221 e XAC1222; C – Domínios das proteínas XAC3250 e XAC3249. Estão presentes os domínios REC, comum de reguladores de resposta; Trans reg_C, domínio de ligação ao DNA; HisKA, domínio fosfoaceptor; HATPAse_c, domínio de ligação ao ATP; e HAMP, importante para a transdução de sinal, presente em Histidina quinases, Adenilil ciclases, proteínas quimiotáticas aceptoras de Metil e Fosfatases. As regiões em azul representam regiões transmembrana e as em rosa representam regiões de baixa complexidade. O resíduo de aspartato responsável pela acepção do fosforila proveniente de uma histidina quinase está conservado em todos os reguladores de resposta. As representações esquemáticas foram obtidas utilizando as sequências de aminoácidos das respectivas proteínas no programa SMART (Letunic e Bork, 2017).

De acordo com o alinhamento obtido, foi verificado que entre os reguladores de resposta XAC0834 e XAC1221, há uma identidade de 47%; enquanto que entre XAC0834 e XAC3250, e entre XAC1221 e XAC3250 há uma identidade de 52% e 53%, respectivamente. Embora apresentem alta semelhança entre si, suas respectivas proteínas sensoras preditas de participarem em um sistema de dois componentes, possuem 21%, 26% e 24% de identidade entre XAC0835 e XAC1222, entre XAC0835 e XAC3249 e entre XAC1222 e XAC3249, respectivamente. Além disto, é possível observar que existem diferentes padrões nos domínios transmembrana presentes nas proteínas sensoras indicados como retângulos azuis na **Figura 12**,

além do domínio HAMP adicional em XAC3249, o que pode sugerir que estas proteínas percebam sinais diferentes entre si. Dessa maneira, optamos por não usar a nomenclatura CoIRS para as proteínas codificadas por *XAC0834/XAC0835*, para evitar generalizações com o trabalho já publicado, que caracterizou o par *XAC3249/XAC3250* (Yan e Wang, 2011).

4.4 Caracterização fenotípica.

4.4.1 Ensaio de motilidade do tipo sliding.

A motilidade *sliding* é definida como um dos tipos de translocação de superfície de células bacterianas, entre *swarming, twitching, gliding* e *darting,* diferenciando-se destes tipos de motilidade por ser produzida pelas forças expansivas presentes em culturas em crescimento, em combinação com propriedades especiais de superfície das células, resultando na fricção reduzida entre a célula e o substrato (Henrichsen, 1972). O espalhamento da colônia neste caso é independente de estruturas extracelulares, como os flagelos e o pilus, e o padrão micromorfológico deste tipo de motilidade é o de uma folha uniforme composta por células compactadas e indiferenciadas proximamente em uma única camada (Henrichsen, 1972). Esta folha se move vagarosamente como uma unidade a uma taxa de expansão de 0,03 – 6 μ m/s, sugerindo que esta não é uma forma ativa de movimento (Harshey, 2003; Henrichsen, 1972). A motilidade *sliding* ainda pode ser inibida por estruturas de superfície como T4P ou flagelos em *Pseudomonas aeruginosa*, possivelmente pelo aumento da interação entre a célula bacteriana e o substrato (Murray *et al.*, 2008). A produção de surfactantes como LPS, lipopeptídeos e glicolipídios também apresenta uma forte correlação com a motilidade *sliding* favorecendo-a (Harshey, 2003).

Em estudos anteriores, a variação do espalhamento da colônia sobre a placa com meio SB 0,5 % foi associada com diferentes níveis intracelulares de c-di-GMP, cujos baixos níveis aumentam a produção de LPS (Andrade, 2011). O espalhamento observado em *X. citri* nessas condições não é *swarming*, motilidade dependente de flagelos, já que foi demonstrado que na linhagem mutante $\Delta fliC$, deficiente na formação de flagelo, não há redução de espalhamento (Guzzo *et al.*, 2009). Para analisarmos se havia alguma diferença nas linhagens de interesse em relação a esses aspectos, foram feitos ensaios de *sliding* em meio SB 0,5 %. Na **Figura 13** está indicado um exemplo das placas obtidas.

Figura 13. XAC0834 afeta positivamente a motilidade *sliding.* **A** – Motilidade das colônias das linhagens selvagem, Δ*XAC0834*, Δ*XAC0835*, Δ*XAC3443* e Δ*XAC3657* em meio SB 0,5%, crescidas durante 2 dias a 30 °C. **B** – Motilidade das colônias das linhagens WT/pJN105, WT/pXAC0834, Δ*XAC0834*/pJN105 e Δ*XAC0834*/pXAC0834 em meio SB 0,5% acrescido de 0,2 % de arabinose e Gm, nas mesmas condições.

Foi observado que a linhagem $\Delta XAC0834$ apresenta motilidade *sliding* reduzida em comparação com a WT, assim como a linhagem $\Delta XAC0834$ /pJN105 em comparação com a WT/pJN105. Para verificar se esta diferença era estatisticamente significativa foram analisados os padrões de espalhamento das linhagens de interesse em 5 experimentos independentes. O resultado da análise estatística está indicado na **Figura 14**. Esta análise confirmou a diferença de

espalhamento observada anteriormente e também confirmou que não há diferença de espalhamento significativa entre as linhagens $\Delta XAC0835$, $\Delta XAC3443$ e $\Delta XAC3657$, portanto a atividade destas proteínas não interfere neste tipo de translocação de superfície.

Embora a ausência de XAC0834 afete o espalhamento da colônia em *X. citri,* a sua superexpressão, WT/pXAC0834, não resulta no fenótipo oposto, como o que foi observado na linhagem mutante da DGC XAC2382 (Teixeira, 2018), sugerindo que XAC0834 possa interferir especificamente na manutenção de níveis regulados de c-di-GMP.

Figura 14. A deleção de XAC0834 afeta negativamente o espalhamento da colônia. Áreas das colônias estudadas em 5 experimentos independentes. As colunas indicam as médias e as barras de erro indicam os desvios padrão. **A** – Colônias crescidas em meio SB 0,5 % durante dois dias a 30 °C. **B** – Colônias crescidas em meio SB 0,5 % acrescido de 0,2 % arabinose e 10 μ g/mL Gm, nas mesmas condições. * Os dados apresentados têm diferenças estatisticamente significativas comparados entre as linhagens indicadas pelos colchetes, com p < 0,05. Foi utilizado o teste não paramétrico de Mann-Whitney para a análise estatística.

4.4.2 Formação de biofilme.

Biofilmes são comunidades de microrganismos altamente estruturadas aderidas a uma superfície que pode ser biótica ou abiótica (Harshey, 2003). A formação de biofilme é importante para auxiliar na capacidade de proteger as bactérias de estresses ambientais, mecanismos de defesa do hospedeiro e compostos antimicrobianos (Parsek e Pradeep, 2003; Parsek e Fuqua, 2004). Uma vez aderidas, uma característica comum é a expressão de grandes quantidades de EPS que, além de promover a aderência a superfície, também protege a bactéria da dessecação e ajuda a manter minerais e nutrientes próximos às células, devido a sua natureza aniônica (Ophir e Gutnick, 1994). Além de EPS como principal constituinte, biofilmes também podem apresentar proteínas, lipídios e ácidos nucleicos em sua composição (Harshey, 2003). O principal EPS produzido por *Xanthomonas* spp. é a goma xantana, um heptasacarídeo composto de glicose, manose e ácido glucurônico, na relação de 2:2:1 (Jansson *et al.*, 1975). Sua produção é regulada, em parte, por um aglomerado de genes de fatores de patogenicidade (*rpf*) e pelo fator difusível de sinal (DSF) (Crossman e Dow, 2004; Dow *et al.*, 2003). Embora seja importante para a formação de biofilme e contribua para a sobrevivência epífita de *X. citri*, a goma xantana não é essencial para a sua patogenicidade (Dunger *et al.*, 2007).

Para avaliar a participação dos genes de interesse na formação de biofilme, foram utilizadas duas estratégias distintas: uma qualitativa e outra quantitativa.

Na análise qualitativa, a formação de biofilme foi avaliada nas superfícies de tubos de ensaio de dois materiais distintos, poliestireno e vidro borossilicato. Estes materiais apresentam características físicas distintas que podem influenciar no perfil de biofilme encontrado por afetar na aderência bacteriana (O'Toole e Kolter, 1998; McEldowney e Fletcher, 1986). Enquanto o poliestireno é uma superfície relativamente hidrofóbica, o vidro borossilicato é uma superfície relativamente hidrofóbica, o poliestireno de biofilme das linhagens estudadas pode ser observado na **Figura 15.**

Todas as linhagens de interesse foram crescidas nos dois materiais e, após 2 dias, os meios de cultura foram retirados, e o biofilme aderido foi corado utilizando cristal violeta. Como não foram observadas diferenças visuais entre os materiais, optou-se por deixar a **Figura 15A** com os tubos de poliestireno, e a **Figura 15B** com os tubos de vidro borossilicato. Estes ensaios demonstraram que *X. citri* não apresenta variação na formação de biofilme entre a superfície de materiais relativamente hidrofóbicos ou hidrofílicos específicos.

Nesta análise, observou-se que o mutante de *XAC0834* teve menor formação de biofilme em relação à linhagem selvagem, assim como o mutante de *XAC0834* com o vetor pJN105 e a sua linhagem selvagem correspondente, WT/pJN105, tendo a formação restaurada na complementação do mutante, *ΔXAC0834*/pXAC0834. Entretanto, a superexpressão de *XAC0834*, WT/p*XAC0834*, não teve maior formação aparente de biofilme em relação ao selvagem. Portanto, é possível afirmar que a ausência de XAC0834 influencia na formação de biofilme.

Para a análise quantitativa foram utilizadas placas de poliestireno de 24 poços. Neste ensaio, um perfil similar ao da formação de biofilme da análise qualitativa foi encontrado (**Figura 16**). Foi confirmado que a diferença encontrada na redução da formação de biofilme entre $\Delta XAC0834$ e WT é estatisticamente significativa, utilizando um teste estatístico não paramétrico de Mann-Whitney, com p < 0,05. Nesta mesma análise estatística, também foram apresentadas diferenças significativas entre $\Delta XAC0835$ e WT, mas entre os mutantes $\Delta XAC3443$ e $\Delta XAC3657$ não houve redução na formação de biofilme, indicando que as proteínas XAC3443 e XAC3657 não participam do desenvolvimento desta estrutura, enquanto que o par do sistema de dois componentes XAC0834/XAC0835 pode influenciar na sua formação (**Figura 16A**).

Figura 15. XAC0834 é importante para a formação de biofilme. A – Triplicatas técnicas das linhagens WT, $\Delta XAC0834$, $\Delta XAC0835$, $\Delta XAC3443$ e $\Delta XAC3657$ que foram deixadas crescendo em tubos de ensaio de poliestireno por 2 dias a 30°C, em meio 2xTY. **B** – Triplicatas técnicas das linhagens WT/pJN105, WT/pXAC0834, $\Delta XAC0834$ /pJN105, $\Delta XAC0834$ /pXAC0834 que foram deixadas crescendo em tubos de ensaio de vidro borossilicato por 2 dias a 30°C, em meio 2xTY acrescido de 0,2% de arabinose e 10 µg/mL de Gm.

O mesmo ensaio foi realizado nas linhagens de complementação do mutante e superexpressão de *XAC0834* sendo observado que as linhagens WT/p*XAC0834* e Δ*XAC0834*/pJN105 apresentam redução estatisticamente significativa quando comparadas a linhagem selvagem, WT/pJN105 (**Figura 16B**). A complementação do mutante de XAC0834, Δ*XAC0834*/p*XAC0834*, restaurou o mesmo padrão de formação de biofilme encontrado na linhagem selvagem, WT/pJN105. Curiosamente, entre a superexpressão de *XAC0834* e seu mutante não houve diferença estatisticamente significativa na formação de biofilme. Tanto a

deleção de XACO834 quanto a sua superexpressão afetam negativamente na formação de biofilme e/ou na aderência das células à placa, sugerindo que níveis regulados dessa proteína sejam importantes para a adesão e formação de biofilme.

Figura 16. XAC0834 é importante para a formação de biofilme em placas de poliestireno. Ensaio quantitativo de formação de biofilme. Foram analisadas 5 replicatas técnicas de cada linhagem indicada em placas de poliestireno de 24 poços, 1 ml em cada poço com uma D.O _{600 nm} inicial de 1,0. **A** – As linhagens estudadas foram deixadas crescendo em repouso no meio 2xTY a 30°C, por 4 dias. **B** – As linhagens estudadas foram deixadas crescendo nas mesmas condições de **A**, com o acréscimo de 0,2% de arabinose e 10 µg/mL de Gm. * Os dados apresentados têm diferenças estatisticamente significativas comparados entre as linhagens indicadas pelos colchetes, com p < 0,05. Foi utilizado o teste não paramétrico de Mann-Whitney para a análise estatística.

4.4.3 Curvas de crescimento.

A motilidade *sliding* depende de dois fatores principais: a taxa de crescimento das culturas e a redução da fricção da bactéria com o substrato, favorecendo o espalhamento por expansão (Henrichsen, 1972). Para determinar se as diferenças encontradas na motilidade e formação de biofilme refletiam diferentes taxas de crescimento inerentes à cada linhagem, foram feitas curvas de crescimento para todas as linhagens de interesse. Estas curvas foram feitas em meio rico 2xTY, e no meio SB, que foi utilizado para os ensaios de *sliding*, sem o ágar que o solidifica.

Ao contrário do meio 2xTY, o meio SB apresenta sacarose na sua composição. A sacarose é a fonte de carbono principal para a síntese de goma xantana em *Xanthomonas* sp., seguida de glicose, piruvato e frutose, em ordem decrescente (Garcia-Ochoa, 2000). Portanto, a presença de sacarose no meio de cultura pode levar ao aumento na produção de goma xantana, que atua como um surfactante entre a célula bacteriana e o substrato, promovendo a motilidade *sliding*.

As curvas de crescimento no meio rico 2xTY, foram obtidas ao longo de 48 horas, a 30°C, com 5 replicatas técnicas (**Figura 17A**). É possível observar que há diferença no perfil de crescimento das linhagens $\Delta XAC0834$ e $\Delta XAC3657$, que atingem valores de D.O. levemente superiores ao dos obtidos pela linhagem WT e pelas linhagens mutantes $\Delta XAC0835$ e $\Delta XAC3443$. Pode-se afirmar que a ausência das proteínas XAC0835 e XAC3443 não afeta a taxa de crescimento em *Xanthomonas citri*, mas a deleção de *XAC0834* e *XAC3657* a aumenta, em meio 2xTY.

Como XAC3657 é uma proteína hipotética e a sua função ainda não foi melhor caracterizada, seriam necessários outros experimentos para averiguar o papel da mesma neste fenótipo, já que nos experimentos realizados neste trabalho não houve alteração fenotípica neste mutante. Já XAC0834, por ser um regulador de resposta, poderia influenciar nos níveis intracelulares de c-di-GMP, de forma a promover o fenótipo observado, já que foi demonstrado

que o c-di-GMP pode regular a atividade de quinases e fosfatases essenciais para o ciclo celular (Lori *et al*. 2015).

No meio rico SB não foram observadas diferenças no crescimento entre as linhagens analisadas (**Figura 17B**). Portanto, pode-se afirmar que a deleção das proteínas XAC0834, XAC0835, XAC3443 e XAC3657 não afeta a taxa de crescimento em *X. citri* em meio SB.

Além destas, foram feitas curvas de crescimento para as linhagens WT/pJN105, WT/pXAC0834, ΔXAC0834/pJN105 e ΔXAC0834/pXAC0834, em meio 2xTY acrescido de 0,2 % arabinose e 10 µg/mL de gentamicina, com 5 replicatas técnicas (**Figura 18A**). Não foram observadas diferenças entre os perfis destas linhagens, indicando que, neste meio, a deleção, superexpressão e complementação de XAC0834 não afetam a taxa de crescimento de *X. citri*. Comparando estas curvas com as indicadas na **Figura 17A**, é possível notar que, enquanto no mutante de *XAC0834* há um aumento no crescimento desta linhagem no meio 2xTY, em comparação com a linhagem WT, o mesmo não ocorre no mutante com o pJN105 integrado e sua linhagem selvagem correspondente. Esta característica provavelmente pode ser decorrente do fato de usar o vetor pJN105, arabinose ou a gentamicina, já que foi demonstrado que essas modificações podem influenciar no perfil de expressão gênica, na taxa de crescimento e em outros fenótipos na bactéria Gram-negativa *Acinetobacter oleivorans* (Hong *et al.*, 2014).

Estas mesmas linhagens tiveram suas curvas de crescimento obtidas em meio SB, acrescido de 0,2 % arabinose e 10 µg/mL de gentamicina e, novamente, foi demonstrado que a deleção, superexpressão e complementação de XAC0834 não afetam a taxa de crescimento de *X. citri*, nestas condições (**Figura 18B**).

Figura 17. As deleções de XAC0834 e XAC3657 afetam positivamente o crescimento de X. *citri* em meio rico 2xTY. A - Curvas de crescimento das linhagens WT, ΔXAC0834, ΔXAC0835, ΔXAC3443 e ΔXAC3657 em meio 2xTY. B – Curvas de crescimento das mesmas linhagens em meio SB. Em ambas, os pontos nas curvas indicam as médias de 5 replicatas técnicas crescidas em placas de 48 poços, e as barras de erro indicam os desvios padrão obtidos em cada momento. Foram feitas medidas na D.O _{600nm} a cada 15 minutos em um período total de 48 e 46 horas, respectivamente.

Figura 18. XAC0834 não afeta o crescimento de X. citri em meio SB. A - Curvas de crescimento das linhagens WT/pJN105, WT/pXAC0834, Δ XAC0834/pJN105 e Δ XAC0834/pXAC0834 em meio 2xTY. B – Curvas de crescimento das mesmas linhagens em meio SB. Em ambas as curvas foram acrescidos aos meios 0,2% arabinose e 10 µg/mL Gm. Os pontos nas curvas indicam as médias de 5 replicatas técnicas crescidas em placas de 48 poços, e as barras de erro indicam os desvios padrão obtidos em cada momento. Foram feitas medidas na D.O _{600nm} a cada 15 minutos em um período total de 48 e 44 horas, respectivamente.

4.4.4. Ensaio de motilidade do tipo twitching.

A motilidade do tipo *twitching* é caracterizada pela translocação bacteriana em superfícies orgânicas ou inorgânicas independente de flagelos (Henrichsen, 1972). Este tipo de motilidade é importante para a colonização da superfície, formação de biofilme, desenvolvimento do corpo de frutificação, transformação e conjugação em diferentes espécies de bactérias (Harshey, 2003). Ela comumente acontece a partir da extensão, aderência ao substrato e retração do T4P polar, sendo necessário para a colonização do hospedeiro para vários patógenos, assim como para a formação de biofilme (Dunger *et al.*, 2014; Bahar *et al.*, 2009; Li e Wang, 2011; Varga *et al.*,2008).

Em X. citri foi demonstrado que a motilidade *twitching* é dependente de alguns componentes do T4P: PilA, PilB, PilT, PilZ e FimX (Dunger *et al.*, 2014). Foram feitos ensaios de motilidade *twitching* para verificar se os mutantes de XAC0834, XAC0835, XAC3443 e XAC3657, assim como a supexpressão, deleção e complementação do mutante de XAC0834, apresentavam algum efeito relacionado a este fenótipo, na tentativa de relacionar estes genes com a expressão de genes do T4P.

Foram feitos 10 experimentos independentes e foi utilizado o teste estatístico t paramétrico, não pareado com correção de Welch para a análise das áreas das colônias obtidas. De acordo com os resultados obtidos, é possível afirmar que a deleção de *XAC0834* afeta positivamente na motilidade *twitching*, em relação a linhagem WT, assim como a deleção de *XAC3443*, enquanto que XAC0835, XAC3443 e XAC3657 não são importantes para este tipo de motilidade (**Figuras 19A e 20A**).

Figura 19. XAC0834 afeta o perfil de motilidade *twitching.* Imagens representativas do fenótipo observado em 10 experimentos independentes. **A** - Bactérias das linhagens indicadas foram crescidas previamente em meio LB por 2 dias a 30°C e então foram transferidas para *King's Broth* com o auxílio de uma ponteira estéril; a figura mostra o perfil de motilidade *twitching* obtida após 5 dias a 30 °C, sendo coradas com uma solução de cristal violeta 0,2%. *ApilA* foi usado como um controle negativo. **B** – Foi realizado o mesmo procedimento descrito em **A**, mas com a adição de 0,2% arabinose e 10 µg/ml de Gm às placas de *King's Broth*.

Figura 20. XAC0834 afeta a motilidade twitching. Áreas das colônias formadas no fundo das placas de petri em 10 experimentos independentes. As colunas indicam as médias e as barras de erro indicam os desvios padrão. **A** – Dados de 10 colônias de cada linhagem e que foram crescidas em *King's Broth* durante cinco dias a 30 °C. **B** – Dados de 10 colônias de cada linhagem e que foram crescidas em *King's Broth* acrescido de 0,2 % arabinose e 10 µg/mL de Gm, nas mesmas condições de **A**. * Os dados apresentados têm diferenças estatisticamente significativas entre as linhagens indicadas pelos colchetes, com p < 0,05. Foi utilizado o teste t paramétrico, não pareado com correção de Welch para a análise estatística.

Curiosamente, ao analisar o efeito da deleção de *XAC0834* carregando o plasmídeo pJN105, o padrão observado na deleção simples desse vetor não se repete, o que talvez possa ser explicado pelo efeito causado ao adicionar um vetor com resistência a antibióticos, como discutido em **Curvas de crescimento**. Entretanto, as colônias da superexpressão WT/pXAC0834 apresentam uma diferença significativa no *twitching* em relação às linhagens selvagem, WT/pJN105, e a complementação do mutante de XAC0834, Δ*XAC0834*/pXAC0834 (**Figuras 19B e 20B**).

Estes dados indicam que XAC0834 apresenta um papel importante neste tipo de motilidade, podendo afetar na expressão de genes do T4P, o que ficou também evidente na análise do transcritoma de WT/pXAC0834, onde foram encontrados genes diferencialmente expressos relacionados com a montagem do T4P, descritos no item a seguir.

4.4.5 Ensaio de motilidade do tipo swimming

A motilidade *swimming* é produzida através da ação de flagelos quando o filme do fluido de superfície for suficientemente espesso, o que a diferencia da motilidade *swarming* (Henrichsen, 1972). Este tipo de translocação de superfície apresenta um padrão micromorfológico não-organizado, com as células movendo-se individualmente e aleatoriamente no meio (Henrichsen, 1972).

Em *Xanthomonas citri* foi demonstrado que a motilidade *swimming* é dependente de flagelos por meio da construção de linhagens mutantes nos genes *fliC* e *flgE*, que são necessários para a formação do *pilus* tipo IV, e a verificação de que o perfil de motilidade *swimming* era reduzido nestas linhagens em comparação com a cepa selvagem (Malamud *et al.*,2011). O mesmo trabalho demonstrou que a motilidade *swimming* não é afetada pela produção ou ausência de goma xantana ao analisar o efeito no fenótipo da linhagem mutante *gumB*, essencial para a produção deste EPS em *Xanthomonas* spp. (Katzen *et al.*, 1996; Malamud *et al.*, 2011).

Com o objetivo de verificarmos se as proteínas codificadas pelos genes de interesse deste trabalho afetam de alguma forma este tipo de motilidade, foram feitos ensaios de *swimming* em meio SB 0,3%. 3 µL de um inóculo com a D.O. _{600nm} normalizada para 0,3 de todas as linhagens de interesse foram inoculados no centro de cada uma das placas e foram cultivados a 30°C durante 4 dias. Após esse período, o fenótipo obtido foi fotografado e as áreas das colônias foram medidas utilizando o software ImageJ (**Figura 21**).

ΔXAC0834 ΔXAC3657 WT/pXAC0834 ΔXAC0834/pXAC0834 ΔXAC0835 ΔpilA ΔpilA

Α

WT

∆XAC3443

Figura 21. XAC0834 afeta positivamente a motilidade swimming. A. Motilidade das colônias das linhagens WT, Δ*XAC0834*, Δ*XAC0835*, Δ*XAC3443*, Δ*XAC3657* e Δ*pilA* em meio SB 0,3%, crescidas durante 4 dias a 30 °C. **B.** Motilidade das colônias das linhagens WT/pJN105, WT/pXAC0834, ΔXAC0834/pJN105 e ΔXAC0834/pXAC0834 em meio SB 0,3% acrescido de 0,2 % de arabinose e Gm, nas mesmas condições.

Foi possível observar que a linhagem $\Delta XAC0834$ teve um espalhamento reduzido em relação a linhagem WT, mas a linhagem mutante da proteína sensora cognata, $\Delta XAC0835$, não afeta este tipo de motilidade da mesma forma, indicando que provavelmente a interação entre essas duas proteínas não seja exclusiva. Também foi possível determinar que as proteínas XAC3443 e XAC3657 não são importantes para a motilidade *swimming*. O fenótipo da linhagem $\Delta pilA$, deficiente na produção de de pilus do Tipo IV, também foi verificado e, por apresentar aumento no espalhamento em comparação com a linhagem WT, é possível hipotetizar que haja uma relação direta entre a motilidade *swimming* e a atividade de pilus do Tipo IV, sendo que a
presença pilus do Tipo IV poderia aumentar o atrito da colônia com o meio, impactando no perfil de *swimming* observado.

Para aferir se as diferenças observadas nas placas eram significativas, foi feita uma análise estatística com todas as linhagens de interesse, confirmando as observações anteriores de que a ausência da proteína reguladora de resposta XAC0834 impacta negativamente neste tipo de motilidade (**Figura 22**).

Figura 22. XAC0834 é importante para a motilidade swimming. Motilidade swimming. Dados das áreas dos halos das colônias das linhagens de interesse obtidas de triplicatas técnicas nos dias 2, 3 e 4 após a inoculação. **A.** Áreas das colônias de WT, $\Delta XAC0834$, $\Delta XAC0835$, $\Delta XAC3443$, $\Delta XAC3657$ e $\Delta pilA$ em meio SB 0,3%, crescidas durante 4 dias a 30°C. **B.** Áreas das colônias de WT/pJN105, WT/pXAC0834, $\Delta XAC0834$ /pJN105 e $\Delta XAC0834$ /pXAC0834 em meio SB 0,3% acrescido de 10 µg/mL gentamicina e 0,2 % arabinose, crescidas durante 4 dias a 30°C. * Os dados apresentados têm diferenças estatisticamente significativas comparados entre as linhagens indicadas pelos colchetes, com p < 0,05. Foi utilizado o teste não paramétrico de Mann-Whitney para a análise estatística.

4.4.6 Ensaio de produção de goma xantana

A goma xantana é um polissacarídeo extracelular (EPS) produzido por bactérias do gênero *Xanthomonas* spp. e que apresenta propriedades reológicas únicas, resultantes de características como a sua alta viscosidade (Kennedy e Bradshaw, 1984; Harding *et al.*, 1987). Linhagens mutantes que apresentam deficiência ou ausência total na produção deste EPS costumam exibir fenótipos característicos como o aspecto não-mucóide da colônia e colônias menores quando comparadas com a linhagem selvagem, entretanto estas linhagens não afetam a virulência em *Xanthomonas citri* (Dunger *et al.*, 2007; Whitfield *et al.*, 1981; Harding *et al.*, 1987).

Como foram observadas diferenças significativas no espalhamento das colônias de algumas das linhagens testadas na motilidade *sliding*, a produção de goma xantana foi quantificada nas mesmas afim de verificar se poderia haver alguma relação entre ambos.

O processo de extração e quantificação de goma xantana foi realizado para todas as linhagens de interesse conforme descrito em Materiais e Métodos, tendo o seu resultado indicado na Figura 23.

Nesta análise foi verificado que a ausência da proteína XAC0834 leva a uma redução significativa na produção de goma xantana em comparação com a linhagem WT (**Figura 23B**), mas esse efeito não ocorre quando há a adição de arabinose, gentamicina e o vetor pJN105, provavelmente porque a presença de arabinose poderia servir como uma fonte de carbono extra, ou outros genes relacionados a esse metabolismo poderiam estar sendo expressos nesta condição (**Figura 23C**). Entretanto, a superexpressão de XAC0834 aumentou a produção de goma xantana, em comparação com a linhagem WT/pJN105, indicando um possível papel desse regulador de resposta na expressão de genes envolvidos no metabolismo deste EPS.

Não foram observadas diferenças significativas na produção de goma xantana nas linhagens mutantes de XAC0835 e XAC3443, o que pode contribuir para a hipótese de que a interação entre a proteína sensora XAC0835 e a reguladora de resposta XAC0834 não seja específica, já que a proteína reguladora de resposta deveria estar ativa apenas com a transferência do grupo fosforila proveniente da proteína sensora. Além disso, a linhagem mutante de XAC3657 mostrou um aumento deste EPS em relação a linhagem WT o que indica uma possível função inibitória para esta proteína hipotética (**Figura 23**).

Figura 23: XAC0834 afeta positivamente a produção de goma xantana. A. Produção de goma xantana das linhagens Δ*XAC0835*, Δ*XAC3443* e Δ*XAC3657* em comparação com a WT no meio de goma. **B.** Produção de goma xantana da linhagem Δ*XAC0834* em comparação com a WT no meio de goma. **C.** Produção de goma xantana das linhagens WT/pJN105, WT/pXAC0834, Δ*XAC0834*/pJN105 e Δ*XAC0834*/pXAC0834 em meio de goma acrescido de 10 µg/mL gentamicina e 0,2 % arabinose. * Os dados apresentados têm diferenças estatisticamente significativas comparados entre as linhagens indicadas pelos colchetes, com p < 0,05. Foi utilizado o teste não paramétrico de Mann-Whitney para a análise estatística.

4.5 Perfil transcritômico da linhagem superexpressando XAC0834.

Para a melhor compreensão do papel fisiológico de XAC0834 em *X. citri*, foi feita uma análise por RNA-seq, também chamada de sequenciamento *shotgun* do transcritoma completo, utilizando a superexpressão de *XAC0834* para verificar quais genes estariam sendo diferencialmente expressos nesta condição. Para isso, as cepas WT/pJN105 e WT/pXAC0834 foram cultivadas em meio 2xTY acrescido de 0,2 % de arabinose e 10 µg/mL de gentamicina até atingirem a fase exponencial de crescimento indicada pela D.O._{600nm} 1,0, tendo seu RNA extraído, cDNA sintetizado e sequenciado de acordo com os protocolos indicados em **Materiais e Métodos**. Ao fim do sequenciamento, foram identificados quais genes estavam diferencialmente expressos comparando os dados de WT/pJN105 com os de WT/pXAC0834. Nesta análise, foram encontrados 45 genes diferencialmente expressos (**Tabela 5**).

Para se ter uma visão geral de quais processos metabólicos seriam mais afetados nesta condição, esses genes foram separados em diferentes categorias de acordo com as funções preditas no banco de dados KEGG (**Figura 24**).

Tabela 5: Genes diferencialmente expressos encontrados na análise do RNA-seq de WT/pXAC0834 em comparação com a linhagem selvagem e o valor de *fold-change* (FC). Os genes que foram escolhidos para ter a sua expressão validada por qRT-PCR estão destacados em negrito.

ID	FC	Descrição				
Genes relacionados ao T4SS						
XAC2609	2,42	carboxypeptidase				
XAC2610	2,2	conserved hypothetical protein				
XAC2611	1,93	conserved hypothetical protein				
XAC2613	2,25	virB5 - type IV secretion system protein VirB5				

Genes relacionados a montagem do pilus Tipo IV

XAC3242	1,68	pilC - type IV pilus assembly protein PilC
XAC3099	1,76	<i>pilJ</i> - twitching motility protein PilJ
XAC3381	1,99	pilQ - type IV pilus assembly protein PilQ
XAC3384	2,11	pilN - type IV pilus assembly protein PilN
XAC3383	2,18	pilO - type IV pilus assembly protein PilO

Genes envolvidos no metabolismo de xantina

conserved hypothetical protein	0,0009	XAC2891				
conserved hypothetical protein	0,0007	XAC2892				
yagR - xanthine dehydrogenase molybdenum-binding subunit	0,0003	XAC2893				
yagS - xanthine dehydrogenase YagS FAD-binding subunit	0,0006	XAC2894				
<i>yagT</i> - xanthine dehydrogenase YagT iron-sulfur-binding subunit	0,0001	XAC2895				
alcohol dehydrogenase	0,0002	XAC2896				
response regulator - GGDEF	0,0015	XAC2897				
hsdR - type I restriction-modification system endonuclease	0,0005	XAC2898				
Genes relacionados ao metabolismo de aminoácidos						
gst - glutathione S-transferase	0,44	XAC0894				

tldD protein

XAC0122

0,49

Tabela 5 (Continuação): Genes diferencialmente expressos encontrados na análise do RNA-seq de WT/pXAC0834 em comparação com a linhagem selvagem e o valor de *fold-change* (FC). Os genes que foram escolhidos para ter a sua expressão validada por qRT-PCR estão destacados em negrito.

XAC2932	0,52	<i>pfpl</i> - protease l						
XAC1349	1,8	serine protease						
	Genes relacionados ao metabolismo de lipídios							
XAC1717	1,92	kdsA - 2-dehydro-3-deoxyphosphooctonate aldolase						
XAC1318	0,57	fadB - 3-hydroxyacyl-CoA dehydrogenase						
XAC0180	1,76	fatty acid desaturase						
	1	Genes relacionados ao estresse oxidativo						
XAC0905	1,94	oxyR - oxidative stress transcriptional regulator						
XAC0209	0,6	<i>yojM</i> - superoxide dismutase like protein						
XAC0210	0,61	sodC2 - superoxide dismutase						
	Genes que codificam proteínas hipotéticas							
XAC2755	0,46	conserved hypothetical protein						
XAC3856	0,46	conserved hypothetical protein						
XAC0294	0,49	conserved hypothetical protein						
XAC2914	0,6	conserved hypothetical protein						
XAC3376	1,76	conserved hypothetical protein						
XAC3348	1,78	conserved hypothetical protein						
XAC3375	1,82	conserved hypothetical protein						
XAC1354	1,86	conserved hypothetical protein						
XAC0190	2,01	conserved hypothetical protein						
XAC1163	2,05	conserved hypothetical protein						
XAC2429	2,09	conserved hypothetical protein						
XAC1051	2,14	conserved hypothetical protein						
XAC0181	2,27	conserved hypothetical protein						

Tabela 5 (Continuação): Genes diferencialmente expressos encontrados na análise do RNA-seq de WT/pXAC0834 em comparação com a linhagem selvagem e o valor de *fold-change* (FC). Os genes que foram escolhidos para ter a sua expressão validada por gRT-PCR estão destacados em pegrito.

	a ter a sua expressa	ao validada por qRT-PCR estad destacados em negrito.						
XAC1817	2,55	conserved hypothetical protein						
XAC2428	2,75	conserved hypothetical protein						
	Gene relacionado ao metabolismo de carboidratos							
XAC3524	1,84	xagB - glycosyltransferase XagB						
Gene relacionado à síntese de flagelos								
XAC1974	2,66	<i>fliD</i> - flagellar protein						
Gene do regulador de resposta XAC0834 superexpresso								
XAC0834	25,14	two-component system regulatory protein						

Figura 24. Funções preditas das proteínas codificas pelos genes encontrados diferencialmente expressos na linhagem WT/pXAC0834, em comparação com WT/pJN105. Os genes foram agrupados com base na anotação de suas funções preditas no banco de dados KEGG. As barras indicam o número de genes encontrados mais ou menos expressos individualmente em cada uma das categorias.

Como observado na **Figura 24**, a maior parte dos genes diferencialmente expressos encontrados codificam proteínas hipotéticas, proteínas do metabolismo de nucleotídeos e de aminoácidos, e do sistema de secreção do tipo IV. Para a confirmação da expressão diferencial por qRT-PCR, foram escolhidos 17 destes genes e que estão destacados em negrito na **Tabela 5**. Estes genes foram escolhidos por representarem os genes que estavam mais expressos de acordo com a sua função, ou por poderem ter algum efeito sobre os fenótipos observados. As funções destes genes e os seus possíveis papéis nos fenótipos da superexpressão de XAC0834 são discutidos mais adiante. O resultado da análise do qRT-PCR com a expressão destes genes selecionados está indicado na **Figura 25**, validando os resultados obtidos no RNA-seq

Os genes XAC0905, XAC1974, XAC2609, XAC2610, XAC2611, XAC2613, XAC3099, XAC3242, XAC3383 e XAC3524 que haviam sido encontrados estando mais expressos no RNAseq apresentaram o mesmo perfil na análise do qRT-PCR, com exceção dos genes XAC3383, XAC2611 e XAC3524 que não atingiram o valor de *cut-off* próximo de 2,0 no qRT-PCR para serem considerados diferencialmente expressos. Os genes XAC2896, XAC2897 e XAC2898, que também foram analisados, não estão indicados no gráfico da **Figura 25** já que não foi possível determinar a expressão dos mesmos na linhagem WT/pXAC0834 com esta técnica, assim como no RNA-seq, embora estes genes tenham sido detectados na linhagem WT/pJN105.

Os genes *XAC0122*, *XAC2755* e *XAC2932* que haviam sido encontrados estando menos expressos no RNA-seq apresentaram o mesmo perfil na análise do qRT-PCR, com exceção de XAC2755 que não atingiu o valor de *cut*-off próximo ou menor que 0,5 no qRT-PCR e, portanto, não pode ser considerado diferencialmente expresso nesta análise. As razões de expressão destes genes podem ser comparadas na **Tabela 6**.

Figura 25. Análise por qRT-PCR de genes selecionados a partir do RNA-seq de WT/pXAC0834. O cDNA foi obtido nas mesmas condições que o usado pelo RNA-seq. Os resultados do gráfico são valores relativos dos níveis de mRNA dos genes em WT/pXAC0834 em comparação com a linhagem WT/pJN105. O gene 16S rRNA foi usado como normalizador. Os valores são representativos de triplicatas técnicas calculados de acordo com o método 2-ΔΔCt (Livak e Schmittgen, 2001).

Tabela 6: Comparação entre as razões de expressão (*fold change*) de genes determinadas porRNA-seq e qRT-PCR na comparação WT/pXAC0834 x WT/pJN105.

Gene	qRT-PCR	RNA-seq
XAC0122	0,02	0,49
XAC0905	2,11	1,94
XAC1974	13,23	2,66
XAC2398	1,40	-
XAC2609	2,09	2,42
XAC2610	2,12	2,2
XAC2611	1,52	1,93
XAC2613	2,33	2,25
XAC2755	0,74	0,46
XAC2896	0	0,0002
XAC2897	0	0,0015
XAC2898	0	0,0005
XAC2932	0,04	0,52
XAC3099	8,34	1,76
XAC3242	2,0	1,68
XAC3383	1,25	2,18
XAC3524	1,02	1,84

4.5.1 Genes envolvidos no Sistema de Secreção do tipo IV.

Os Sistemas de Secreção do tipo IV (T4SS) são complexos multiproteicos que transportam proteínas efetoras e complexos proteína-DNA através das membranas bacterianas para o meio extracelular ou diretamente no citoplasma das células, podendo injetar fatores de virulência em seus hospedeiros eucarióticos sendo, dessa forma, essenciais para a colonização

no hospedeiro e para a transferência horizontal de material genético entre bactérias, por exemplo (Souza *et al.*, 2015). Os T4SS são geralmente compostos estruturalmente por um conjunto de 12 proteínas centrais chamadas de VirB1-VirB11 junto com VirD4, compreendendo ATPases citoplasmáticas, um complexo central periplasmático, um complexo na membrana interna, um pilus extracelular e uma transglicosilase periplasmática codificada por VirB1 (Trotker *et al.*, 2014; Waksman e Orlova, 2014).

Entre os genes encontrados mais expressos no transcritoma da superexpressão de XAC0834 estão XAC2609, XAC2610, XAC2611 e XAC2613, que codificam proteínas relacionadas com esse sistema de secreção.

Foi demonstrado que *XAC2609* codifica uma carboxipeptidase que é capaz de hidrolisar peptidoglicano e interage com seu inibidor XAC2610, uma lipoproteína periplasmática putativa (Souza *et al.*, 2015), e que XAC2610 protege o envelope celular de *X. citri* contra efeitos de autólise celular promovidos pela atividade de XAC2609, conferindo imunidade para *X. citri* contra a atividade intrínseca desta carboxipeptidase (Oka, 2017). Além destes genes, também foi demonstrado que XAC2611, que codifica uma proteína hipotética, exerce um efeito negativo sobre a atividade de T4SS em *X. citri*. (Oka, 2017), e XAC2613, chamada de VirB5, codifica uma proteína que forma o pilus extracelular do T4SS sendo essencial para a função deste sistema (Trotker *et al.*, 2014; Waksman e Orlova, 2014; Oka, 2017).

Os genes que codificam estas proteínas apresentaram níveis elevados e semelhantes tanto no RNA-seq quanto no qRT-PCR, o que seria o esperado na relação de uma proteína que hidrolisa peptidoglicano e seu inibidor e por serem provavelmente transcritos como um operon. O aumento da expressão dos genes que codificam estas proteínas pode indicar que o sistema de dois componentes XAC0834/0835 seja importante para conferir uma vantagem competitiva no crescimento contra outras espécies bacterianas, mas experimentos que corroborem esta hipótese ainda estão sendo planejados.

4.5.2. Genes envolvidos na montagem do pilus do tipo IV.

O pilus do tipo IV (T4P) é uma estrutura bacteriana filamentar, localizada na superfície da célula e que é importante para diversas funções como: motilidade do tipo *twitching*, formação de biofilme, adesão a superfícies e ao hospedeiro, transformação natural, recepção de fagos, patogenicidade e escape dos mecanismos de defesa do sistema imune (Craig *et al.*, 2004; Mattick, 2002; Nudleman e Kaiser, 2004).

Na análise do transcritoma de WT/pXAC0834, os genes que codificam as proteínas PilC, PilO e PilJ, que estão entre as proteínas necessárias para a montagem do pilus tipo IV, foram encontrados diferencialmente expressos com maior expressão em relação ao selvagem. PilC, XAC3242, é uma proteína de membrana interna necessária para a localização polar de PilB, uma ATPase do T4P, em *Pseudomonas aeruginosa* (Chiang *et al.*, 2005); PilO, XAC3383, foi caracterizada como parte de um subcomplexo proteico, composto por PilM, PilN, PilO e PilQ, localizada na membrana interna e voltada para o espaço periplásmico (Tammam *et al.*, 2011); e PilJ, XAC3099, é predita de ser uma proteína de membrana receptora de sinal localizada nos polos da célula e necessária para a extensão do T4P em *P. aeruginosa* (Delange *et. al.*, 2007).

O aumento na expressão de genes do pilus do tipo IV é condizente com os resultados obtidos nos experimentos de *twitching* indicados anteriormente nas **Figuras 19 e 20**, onde é possível observar o aumento deste tipo de motilidade na superexpressão de XAC0834 em relação à linhagem selvagem. Como foi demonstrado que há uma possível relação direta entre a motilidade *twitching* e a formação de biofilme (O'Toole e Kolter, 1998; Dunger *et al.*, 2014), seria esperado também o aumento da formação de biofilme em WT/pXAC0834, entretanto foi observada uma redução de sua formação, como indicado na **Figura 16**, o que pode indicar que há uma diminuição na aderência das colônias desta linhagem, mas ensaios que corroborem esta hipótese ainda estão sendo planejados.

Outro gene encontrado que codifica uma proteína relacionada com estruturas responsáveis por motilidade foi XAC1974, também chamado de *fliD*. A proteína FliD participa na montagem do filamento flagelar e sua expressão pode ser regulada pelo fator σ^{54} , cujo mutante afeta a motilidade *swimming* negativamente (Gicharu, 2016). Semelhante ao observado com os genes do pilus do tipo IV, *XAC1974* foi encontrado sendo positivamente expresso na análise do RNA-seq. De acordo com a caracterização fenotípica de todas as linhagens de interesse, embora não tenha sido encontrada uma diferença significativa entre WT/pJN105 e WT/pXAC0834 com relação a este fenótipo, foi observado que a linhagem mutante de XAC0834 afeta a motilidade *swimming* o que pode indicar que XAC0834 regula a expressão de genes envolvidos na correta formação de flagelos (**Figura 22**).

4.5.3. Genes envolvidos no metabolismo de xantina.

Durante a análise dos dados do RNA-seq, foi observado que havia baixa ou nenhuma expressão dos genes *XAC2891* a *XAC2898* na linhagem WT/pXAC0834 em comparação com a WT/pJN105. Estes genes codificam proteínas que estão relacionadas com o metabolismo de xantina e outros processos celulares (**Figura 26**).

A xantina é uma base purínica, produto da via de degradação de purinas, que pode ser convertida a ácido úrico pela ação de oxidoredutases compostas pelas subunidades XAC2891, XAC2892, XAC2893, XAC2894 e XAC2895. XAC2896 é uma álcool desidrogenase que também pode estar envolvida nesta reação.

XAC2897 é um regulador de resposta que apresenta um domínio Cache no N-terminal e um domínio GGDEF no C-terminal. Foi demonstrado que esta proteína interage diretamente com outra diguanilato ciclase, XAC2446, que regula negativamente a formação de biofilme e promove a motilidade *sliding* de *X. citri* e inibe a atividade enzimática de XAC2897, podendo influenciar indiretamente nos níveis intracelulares de c-di-GMP (Oliveira, 2015).

Figura 26. Localização genômica dos genes relacionados com o metabolismo de xantina. Em vermelho, genes que participam do metabolismo de nucleotídeos; em cinza, genes não classificados; e em verde, gene que participa de processos celulares de acordo com a anotação do banco de dados KEGG.

XAC2898, HsdR, é uma endonuclease do sistema de restrição do tipo I, que é um dos sistemas responsáveis para a proteção celular e manutenção do material genético contra a invasão de DNA exógeno (Moreira, 2004).

O mesmo perfil de expressão desses genes no RNA-seq, ou seja, nenhuma expressão em WT/pXAC0834, também foi obtido com a análise por qRT-PCR dos genes *XAC2896, XAC2897* e *XAC2898* em específico, apesar destes genes serem expressos em WT/pJN105. Esse resultado pode indicar que os fenótipos obtidos também são decorrentes da ausência de expressão destes genes na linhagem superexpressando *XAC0834*.

4.5.4. Características de outros genes analisados.

Para a validação por qRT-PCR, além dos genes descritos, foram escolhidos outros genes que codificavam proteínas que poderiam estar relacionadas com os fenótipos estudados.

XAC2755 codifica uma proteína hipotética que apresenta um domínio NpIC/P60 que é característico de peptidases de parede celular, importante para a hidrólise de peptidoglicano durante o crescimento bacteriano, desenvolvimento e divisão celular (Anantharaman e Aravind,

2003); *XAC2932*, *pfpl*, codifica uma protease cuja ausência reduz a formação de biofilme em *P*. *aeruginosa* (Rodriguez-Rojas e Blázquez, 2009); *XAC0122*, TldD, é uma metaloprotease que pode modular a atividade da DNA girase em *Escherichia coli* (Murayama *et. al.*, 1996). Os genes que codificam estas proteínas estavam menos expressos na linhagem WT/pJN105 no RNA-seq e foram confirmados pelo qRT-PCR, com exceção de *XAC2755* que não apresentou expressão diferencial significativa abaixo do *cut-off* na análise por qRT-PCR, embora também tenha sido menos expressa.

XAC0905, OxyR, é um regulador transcricional de estresse oxidativo, que também já foi identificado tendo a expressão aumentada em bactérias inoculadas em cinco variedades de citros com diferentes níveis de suscetibilidade ao cancro cítrico (Mendoza, 2016). Este gene foi encontrado com expressão aumentada no RNA-seq e o mesmo padrão também foi observado no qRT-PCR.

XAC3524, XagB, é uma glicosiltransferase que participa da síntese de EPS e, portanto, também pode afetar a produção de biofilme, como discutido em **Formação de biofilme**, além de proteger a bactéria contra danos oxidativos causados como um mecanismo de defesa das plantas em *Xanthomonas campestris* (Tao *et. al.*, 2010; Polidoros *et al.*, 2001). Foi demonstrado que a sua expressão é indiretamente regulada por meio do regulador transcricional Clp, que apresenta um sítio de ligação ao c-di-GMP e é inibido por este segundo mensageiro (Ryan, 2013). Na análise do RNA-seq, *xagB* foi encontrado mais expresso na linhagem WT/pJN105, mas essa expressão diferencial não pôde ser validada pelo qRT-PCR, apresentando um *fold-change* de 1,02, abaixo do *cut-off* utilizado para determinar a expressão diferencial.

XAC2398, que codifica a proteína FimX, também foi escolhida para ter a sua expressão verificada por qRT-PCR, mesmo não apresentando diferença significativa de expressão no RNAseq, já que FimX é um regulador caracterizado da biogênese de pilus do tipo IV. FimX possui os domínios GGDEF e EAL inativos, mas o domínio EAL mantém a habilidade de ligar c-di-GMP, além de interagir com PilZ, outra proteína necessária para a biogênese deste tipo de pilus (Navarro *et al.*, 2009; Chin *et al.*, 2012; Guzzo *et al.*, 2009). A expressão diferencial deste gene poderia reforçar a hipótese de que os fenótipos observados estão relacionados com c-di-GMP, entretanto não foi observada essa expressão no qRT-PCR, apresentando um *fold-change* de 1,4, que está abaixo do *cut-off* utilizado para determinar a expressão diferencial.

4.6 Considerações finais e Perspectivas

Os experimentos realizados neste trabalho indicaram a importância do sistema de dois componentes XAC0834/XAC0835, XAC3443 e da proteína hipotética XAC3657 em fenótipos comumente associados a diferentes níveis intracelulares de c-di-GMP. Os resultados obtidos destas análises estão sumarizados na **Tabela 7**.

Linhagens	WΤ	ΔXAC0834	ΔXAC0835	ΔXAC3443	ΔXAC3657	ΔρίΙΑ	WT/pJN105	WT/ pXAC0834	<i>ΔХАС0834/</i> pJN105	<u> </u>
Sliding	=	-	=	=	=	ND	=	=	-	=
Twitching	=	+	=	+	=	=	=	+	=	=
Biofilme qualitativo	=	-	=	=	=	ND	=	=	-	=
Biofilme quantitativo	=	-	-	=	=	ND	=	-	-	=
Swimming em SB	=	-	=	=	=	+	=	=	-	=
Curvas de crescimento em SB	=	=	=	=	=	ND	=	=	=	=
Goma xantana	=	-	=	=	+	ND	=	+	=	=

Tabela 7: Comparação entre os fenótipos analisados das linhagens de interesse.

= padrão semelhante ao da linhagem WT.

- padrão diminuído da linhagem mutante em relação a WT.

+ padrão aumentado da linhagem mutante em relação a WT.

ND – Não determinado.

De acordo com as análises feitas, foi verificado a proteína reguladora de resposta XAC0834 pode participar na regulação de genes relacionados com a produção de goma xantana e na formação de biofilme, além de afetar positivamente a motilidade *swimming* e *swarming* e afetar negativamente a motilidade *twitching*. Entretanto, a sua proteína sensora cognata, XAC0835, não afeta os mesmos fenótipos com exceção da formação de biofilme, tendo o mesmo efeito que XAC0834. Já a proteína reguladora de resposta XAC3443 inibe apenas a motilidade *twitching* e a proteína hipotética *XAC3657* afeta negativamente na produção de goma xantana (**Figura 27**).

Figura 27. Possíveis relações entre as proteínas estudadas e os fenótipos observados. A proteína XAC0834 afeta positivamente na produção de goma xantana, formação de biofilme e motilidades *swimming* e *swarming*, e inibe a motilidade *twitching*. XAC0835 afeta positivamente na formação de biofilme. XAC3443 e XAC3657 inibem a motilidade *twitching* e a produção de goma xantana, respectivamente.

Os processos de regulação metabólica de segundos mensageiros são complexos e outros experimentos são necessários para a melhor caracterização funcional dos genes estudados e determinação da sua relação com o c-di-GMP.

A observação de que o fenótipo de formação de biofilme é afetado por XAC0834 também permitiu criarmos hipóteses acerca de seu envolvimento na virulência de *X. citri*, sendo necessária a realização de ensaios que determinem a virulência, aderência e curvas de crescimento *in vivo*, além da análise por microscopia dos padrões de distribuição das bactérias pela superfície por *twitching*.

Como os genes do sistema de dois componentes XAC0834/XAC0835 participam de um operon juntamente com o gene da tioesterase *tesA*, *XAC0833*, e na análise do RNA-seq da superexpressão de XAC0834 foram encontrados genes relacionados ao metabolismo de lipídios e ao estresse oxidativo, seria também interessante a verificação do papel deste sistema nesta via.

A expressão diferencial de genes relacionados ao sistema de secreção do tipo IV na análise do RNA-seq, com a validação por qRT-PCR, presente na superexpressão de *XAC0834* poderia também motivar a futura verificação do papel de XAC0834 na vantagem competitiva com outros organismos como, por exemplo, o modelo de estudo *Dictyostelium discoideum*; já que os genes *XAC2609* e *XAC2610* deste sistema e encontrados diferencialmente expressos na linhagem testada, são descritos como importantes para a competição interespecífica.

Além disto, para podermos fazer uma relação direta dos fenótipos observados neste trabalho com os níveis intracelulares de c-di-GMP, planeja-se a quantificação de c-di-GMP nas linhagens de interesse por meio de cromatografia líquida de alta eficiência, HPLC.

Como a análise do RNA-seq apresentada neste trabalho considerou apenas a superexpressão de XAC0834, também seria interessante avaliar a expressão diferencial de genes da linhagem ΔXAC0834/pJN105, analisando os impactos da ausência desta proteína.

Desta forma, este trabalho contribuiu para aumentar o conhecimento sobre vias relacionadas a c-di-GMP e sistemas de dois componentes, abrindo novos caminhos para trabalhos futuros.

5. Conclusões

- Os níveis intracelulares das proteínas XAC0834, XAC3443 e XAC3657 são afetados pelo segundo mensageiro c-di-GMP.
- A regulação da expressão dos genes que codificam as proteínas XAC0834, XAC3443 ocorre no nível pós-transcricional, enquanto que XAC3657 pode ter a sua expressão regulada transcricionalmente.
- Os genes XAC0834 e XAC0835 formam um operon, juntamente com XAC0833 e, portanto, a transcrição destes genes deve ocorrer pelos mesmos reguladores, apoiando a hipótese de se tratarem de um sistema de dois componentes.
- Os genes XAC3442 e XAC3443 também são transcritos conjuntamente.
- XAC0834 afeta positivamente a motilidade *sliding* e *swimming*, enquanto que XAC0835,
 XAC3443 e XAC3657 não impactam nestas motilidades. A superexpressão de XAC0834
 e a complementação da deleção de XAC0834 restauram o fenótipo observado na linhagem WT/pJN105.
- XAC0834 é importante para a formação de biofilme em tubos de ensaio de poliestireno e de vidro borossilicato.
- XAC0834 e XAC0835 afetam positivamente na formação de biofilme em placas de poliestireno. A complementação da deleção de XAC0834 restaura o fenótipo observado na linhagem WT/pJN105. Tanto a superexpressão quanto a deleção de XAC0834 reduzem a formação de biofilme em comparação com WT/pJN105 em placas de poliestireno, sugerindo que níveis regulados dessa proteína sejam necessários para a regulação da formação de biofilme.
- As proteínas XAC3443 e XAC3657 não participam da formação de biofilme.

- XAC0834 e XAC3657 afetam negativamente o crescimento de X. citri em meio rico 2xTY, mas esse fenótipo não é observado em meio SB, sugerindo que a diferentes fontes de carbono podem impactar na expressão dos genes que codificam estas proteínas.
- As proteínas XAC0835 e XAC3443 não afetam o crescimento de X. citri.
- Tanto a deleção quanto a superexpressão de XAC0834 afetam positivamente o perfil de motilidade *twitching*.
- A presença de um plasmídeo no mutante ΔXAC0834 afeta o fenótipo de twitching, independentemente da presença de um inserto com a cópia selvagem do gene.
- A proteína XAC3443 afeta negativamente a motilidade *twitching*.
- As proteínas XAC0835 e XAC3657 não são importantes para a motilidade twitching.
- A produção de goma xantana é afetada positivamente havendo a presença da proteína
 XAC0834, e negativamente na presença da proteína hipotética XAC3657.
- A superexpressão de XAC0834 influencia na expressão de genes relacionados com o sistema de secreção do tipo IV, na montagem do pilus tipo IV e em outros processos metabólicos, sugerindo um efeito em características ligadas à virulência e/ou adaptação.

6. Referências bibliográficas

AMES, S. K.; FRANKEMA, N.; KENNEY, L. J. C-terminal DNA binding stimulates N-terminal phosphorylation of the outer membrane protein regulator OmpR from *Escherichia coli*. **Proceedings of the National Academy of Sciences**, v. 96, n. 21, p. 11792-11797, 1999.

AN, S.-Q. et al. The PAS domain-containing histidine kinase RpfS is a second sensor for the diffusible signal factor of *Xanthomonas campestris*. **Molecular Microbiology**, v. 92, n. 3, p. 586-597, May 2014. ISSN 0950-382X. Disponível em: < <Go to ISI>://WOS:000334857400011 >.

ANANTHARAMAN, Vivek; ARAVIND, L. Evolutionary history, structural features and biochemical diversity of the NIpC/P60 superfamily of enzymes. **Genome biology**, v. 4, n. 2, p. R11, 2003.

ANDRADE, M. D. O. Estudo da sinalização celular envolvendo a via do quorum-sensing e os segundos mensageiros c-diGMP e (p) ppGpp no fitopatógeno *Xanthomonas axonopodis* pv *citri*. 2011. 236 (Doutorado). Departamento de Bioquímica, Universidade de São Paulo, Instituto de Química.

ANDRADE, M. D. O. et al. The HD-GYP domain of RpfG mediates a direct linkage between the Rpf quorum-sensing pathway and a subset of diguanylate cyclase proteins in the phytopathogen *Xanthomonas axonopodis* pv *citri*. **Molecular microbiology**, v. 62, n. 2, p. 537-551, 2006.

AUSUBEL, F. M. et al., Eds. Current Protocols in Molecular Biology. New York: John Wiley and Sonsed. 1996.

BAHAR, O.; GOFFER, T.; BURDMAN, S. Type IV pili are required for virulence, twitching motility, and biofilm formation of *Acidovorax avenae* subsp. *citrulli*. **Molecular plant-microbe interactions**, v. 22, n. 8, p. 909-920, 2009.

BARAKAT, M. et al. P2CS: a two-component system resource for prokaryotic signal transduction research. **BMC genomics**, v. 10, n. 1, p. 315, 2009.

BLUM, J. K., e BOMMARIUS, A. S. Amino ester hydrolase from *Xanthomonas campestris* pv. *campestris*, ATCC 33913 for enzymatic synthesis of ampicillin. **Journal of molecular catalysis**. B, Enzymatic **67:**21-28. 2010.

BOCH, J.; BONAS, U. *Xanthomonas* AvrBs3 Family-Type III Effectors: Discovery and Function. **Annual Review of Phytopathology, Vol 48,** v. 48, p. 419-436, 2010 2010. ISSN 0066-4286. Disponível em: < <Go to ISI>://WOS:000282062400020 >.

BRADFORD, MARION M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. **Analytical biochemistry**, v. 72, n. 1-2, p. 248-254, 1976.

BRUNINGS, A. M.; GABRIEL, D. W. *Xanthomonas citri*: breaking the surface. **Molecular Plant Pathology,** v. 4, n. 3, p. 141-157, May 2003. ISSN 1464-6722. Disponível em: < <Go to ISI>://WOS:000182965900002 >.

BUTTNER, D.; BONAS, U. Getting across - bacterial type III effector proteins on their way to the plant cell. **Embo Journal,** v. 21, n. 20, p. 5313-5322, Oct 15 2002. ISSN 0261-4189. Disponível em: < <Go to ISI>://WOS:000178802100001 >.

CASINO, P.; RUBIO, V.; MARINA, A. The mechanism of signal transduction by two-component systems. **Current Opinion in Structural Biology,** v. 20, n. 6, p. 763-771, Dec 2010. ISSN 0959-440X. Disponível em: < <Go to ISI>://WOS:000285674900014 >.

CHAN, J. W.; GOODWIN, P. H. The molecular genetics of virulence of *Xanthomonas campestris*. **Biotechnol Adv,** v. 17, n. 6, p. 489-508, Nov 1999. ISSN 0734-9750. Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/14538126 >.

CHIANG, P.; HABASH, M.; BURROWS, L. L. Disparate subcellular localization patterns of *Pseudomonas aeruginosa* type IV pilus ATPases involved in twitching motility. **Journal of bacteriology**, v. 187, n. 3, p. 829-839, 2005.

CHIN, K.-H. et al. Structural polymorphism of c-di-GMP bound to an EAL domain and in complex with a type II PilZ-domain protein. Acta Crystallographica Section D: Biological Crystallography, v. 68, n. 10, p. 1380-1392, 2012.

CRAIG, L.; PIQUE, M. E.; TAINER, J. A. Type IV pilus structure and bacterial pathogenicity. **Nature Reviews Microbiology**, v. 2, n. 5, p. 363, 2004.

CROSSMAN, L.; DOW, J. M. Biofilm formation and dispersal in *Xanthomonas campestris*. **Microbes and infection**, v. 6, n. 6, p. 623-629, 2004.

CUBERO, J.; GRAHAM, J. H. Genetic relationship among worldwide strains of *Xanthomonas* causing canker in citrus species and design of new primers for their identification by PCR. **Applied and Environmental Microbiology**, v. 68, n. 3, p. 1257-1264, Mar 2002. ISSN 0099-2240. Disponível em: < <Go to ISI>://WOS:000174206200032 >.

DA SILVA, A. C. R. et al. Comparison of the genomes of two *Xanthomonas* pathogens with differing host specificities. **Nature**, v. 417, n. 6887, p. 459-463, May 23 2002. ISSN 0028-0836. Disponível em: < <Go to ISI>://WOS:000175730900043 >.

DANHORN, T.; FUQUA, C. Biofilm formation by plant-associated bacteria. **Annual Review of Microbiology,** v. 61, p. 401-422, 2007 2007. ISSN 0066-4227. Disponível em: < <Go to ISI>://WOS:000250965600021 >.

DELANGE, P. A. et al. PilJ localizes to cell poles and is required for type IV pilus extension in *Pseudomonas aeruginosa*. **Current microbiology**, v. 55, n. 5, p. 389-395, 2007.

DOW, J. M. et al. Biofilm dispersal in *Xanthomonas campestris* is controlled by cell–cell signaling and is required for full virulence to plants. **Proceedings of the National Academy of Sciences**, v. 100, n. 19, p. 10995-11000, 2003.

DUNGER, G. et al. Xanthan is not essential for pathogenicity in citrus canker but contributes to *Xanthomonas* epiphytic survival. **Arch Microbiol**, v. 188, n. 2, p. 127-135, Aug 2007. ISSN 0302-8933. Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/17356870 >.

DUNGER, G et al. *Xanthomonas citri* subsp. *citri* type IV pilus is required for twitching motility, biofilm development, and adherence. **Molecular Plant-Microbe Interactions**, v. 27, n. 10, p. 1132-1147, 2014.

FREITAS, E. C. D. **Caracterização molecular de proteínas envolvidas nos mecanismos de homeostase de cobre em** *Xanthomonas citri* **subsp.** *citri***. 2013. 163 (Doutorado). Departamento de Biotecnologia, Universidade Estadual Paulista Júlio de Mesquita Filho, Instituto de Química de Araraquara.**

FUNDECITRUS.Cancrocítrico.2016.Disponívelem:<</th>https://www.fundecitrus.com.br/doencas/cancro/7 >.

FUNDECITRUS. Estimativa da safra de laranja 2019/2020 do cinturão citrícola de São Paulo eTriângulo/SudoesteMineiro.2019.Disponívelem:<</th>https://www.fundecitrus.com.br/pdf/pes_relatorios/2019_05_10_Sum%C3%A1rio_Executivo_da_Estimativa_da_Safra_de_Laranja_2019-2020.pdf >.timativa_da_Safra_de_Laranja_2019-2020.pdf >.

GALPERIN, M. Y. Structural classification of bacterial response regulators: diversity of output domains and domain combinations. **Journal of bacteriology**, v. 188, n. 12, p. 4169-4182, 2006.

GAO, R.; STOCK, A. M. Biological Insights from Structures of Two-Component Proteins. **Annual Review** of **Microbiology**, v. 63, p. 133-154, 2009 2009. ISSN 0066-4227. Disponível em: < <Go to ISI>://WOS:000270910300008 >.

GARCIA-OCHOA, F. et al. Xanthan gum: production, recovery, and properties. **Biotechnology advances**, v. 18, n. 7, p. 549-579, 2000.

GICHARU, Gibson Kamau et al. The sigma 54 genes rpoN1 and rpoN2 of *Xanthomonas citri* subsp. *citri* play different roles in virulence, nutrient utilization and cell motility. **Journal of integrative agriculture**, v. 15, n. 9, p. 2032-2039, 2016.

GRAHAM, J. H. et al. *Xanthomonas axonopodis* pv. *citri*: factors affecting successful eradication of citrus canker. **Molecular Plant Pathology,** v. 5, n. 1, p. 1-15, Jan 2004. ISSN 1464-6722. Disponível em: < <Go to ISI>://WOS:000188959900001 >.

GRAHAM, J. H., GOTTWALD, T. R. Research perspectives on eradication of citrus bacterial diseases in Florida. **Plant Dis.** 75:1193–1200. 1991.

GUO, Y., SAGARAM, U. S., KIM, J. S., e WANG, N. Requirement of the *galU* gene for polysaccharide production by and pathogenicity and growth In Planta of *Xanthomonas citri* subsp. *citri*. **Appl Environ Microbiol** 76:2234-2242. 2010.

GUZZO, C. R. et al. PILZ protein structure and interactions with PILB and the FIMX EAL domain: implications for control of type IV pilus biogenesis. Journal of molecular biology, v. 393, n. 4, p. 848-866, 2009.

HANAHAN, D. Studies on transformation of *Escherichia coli* with plasmids. Journal of molecular biology, v. 166, n. 4, p. 557-580, 1983.

HARDING, N. E. *et al*. Genetic and physical analyses of a cluster of genes essential for xanthan gum biosynthesis in *Xanthomonas campestris*. **Journal of bacteriology**, v. 169, n. 6, p. 2854-2861, 1987.

HARSHEY, R. M. Bacterial motility on a surface: many ways to a common goal. **Annual Reviews in Microbiology**, v. 57, n. 1, p. 249-273, 2003.

HE, Y. W. et al. Genome scale analysis of diffusible signal factor regulon in *Xanthomonas campestris* pv. *campestris*: identification of novel cell-cell communication-dependent genes and functions. **Molecular Microbiology**, v. 59, n. 2, p. 610-622, Jan 2006. ISSN 0950-382X. Disponível em: < <Go to ISI>://WOS:000234162900022 >.

HENGGE, R. Principles of c-di-GMP signalling in bacteria. **Nature Reviews Microbiology,** v. 7, n. 4, p. 263-273, Apr 2009. ISSN 1740-1526. Disponível em: < <Go to ISI>://WOS:000264179900010 >.

HENRICHSEN, J. Bacterial surface translocation: a survey and a classification. **Bacteriological reviews**, v. 36, n. 4, p. 478, 1972.

HONG, H.; JUNG, J.; PARK, W.. Plasmid-encoded tetracycline efflux pump protein alters bacterial stress responses and ecological fitness of *Acinetobacter oleivorans*. **PLoS One**, v. 9, n. 9, p. e107716, 2014.

HULKO, M. et al. The HAMP domain structure implies helix rotation in transmembrane signaling. **Cell**, v. 126, n. 5, p. 929-940, 2006.

ITOU, H.; TANAKA, I. The OmpR-family of proteins: insight into the tertiary structure and functions of two-component regulator proteins. **The Journal of Biochemistry**, v. 129, n. 3, p. 343-350, 2001.

JANSSON, P.; KENNE, L.; LINDBERG, B. Structure of the extracellular polysaccharide from *Xanthomonas campestris*. **Carbohydrate Research**, v. 45, n. 1, p. 275-282, 1975.

JEONG, J.-Y. et al. One-Step Sequence- and Ligation-Independent Cloning as a Rapid and Versatile Cloning Method for Functional Genomics Studies. **Applied and Environmental Microbiology,** v. 78, n. 15, p. 5440-5443, Aug 2012. ISSN 0099-2240. Disponível em: < <Go to ISI>://WOS:000306532500051 >.

JESUS, W. C. J. et al. Injuries caused by citrus leafminer (*Phyllocnistis citrella*) exacerbate citrus canker (*Xanthomonas axonopodis* pv. *citri*) infection. **Fitopatologia Brasileira,** v. 31, n. 3, p. 277-283, May-Jun 2006. ISSN 0100-4158. Disponível em: < <Go to ISI>://BIOABS:BACD200800010216 >.

KANEHISA, M. et al. New approach for understanding genome variations in KEGG. **Nucleic acids research**, v. 47, n. D1, p. D590-D595, 2018.

KARATAN, E.; WATNICK, P. Signals, Regulatory Networks, and Materials That Build and Break Bacterial Biofilms. **Microbiology and Molecular Biology Reviews,** v. 73, n. 2, p. 310-+, Jun 2009. ISSN 1092-2172. Disponível em: < <Go to ISI>://WOS:000266517700005 >.

KATZEN, F. et al. Promoter analysis of the *Xanthomonas campestris* pv. *campestris* gum operon directing biosynthesis of the xanthan polysaccharide. **Journal of bacteriology**, v. 178, n. 14, p. 4313-4318, 1996.

KAWADA-MATSUO, M.; MAZDA, Y.; OOGAI, Y.; KAJIYA, M.; KAWAI, T.; YAMADA, S.; MIYAWAKI, S.; OHO, T.; e KOMATSUZAWA, H. GlmS and NagB regulate amino sugar metabolism in opposing directions and affect *Streptococcus* mutans virulence. **PLoS One** 7:e33382, 2012.

KENNEDY, J. F. e BRADSHAW, I. J. Production, properties and applications of xanthan, p. 319-371. In M. E. Bushell (ed.), **Progress in industrial microbiology**, vol. 19. Elsevier/NorthHolland Publishing Co., Amsterdam. 1984.

LETUNIC, I.; BORK, P. 20 years of the SMART protein domain annotation resource. **Nucleic acids research**, v. 46, n. D1, p. D493-D496, 2017.

LI, J.; WANG, N. Genome-wide mutagenesis of *Xanthomonas axonopodis* pv. *citri* reveals novel genetic determinants and regulation mechanisms of biofilm formation. **PLoS One** 6:e21804, 2011.

LI, J.; WANG, N. The wxacO gene of *Xanthomonas citri* ssp *citri* encodes a protein with a role in lipopolysaccharide biosynthesis, biofilm formation, stress tolerance and virulence. **Molecular Plant Pathology**, v. 12, n. 4, p. 381-396, May 2011. ISSN 1464-6722. Disponível em: < <Go to ISI>://WOS:000289149400007 >.

LIU, Y. et al. GsmR, a response regulator with an HD-related output domain in *Xanthomonas campestris*, is positively controlled by Clp and is involved in the expression of genes responsible for flagellum synthesis. **The FEBS journal**, v. 280, n. 1, p. 199-213, 2013.

LIVAK, K. J.; SCHMITTGEN, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. **Methods,** v. 25, n. 4, p. 402-408, Dec 2001. ISSN 1046-2023. Disponível em: < <Go to ISI>://WOS:000173949500003 >.

LORI, C. et al. Cyclic di-GMP acts as a cell cycle oscillator to drive chromosome replication. **Nature**, v. 523, n. 7559, p. 236, 2015.

LOVE, M. I.; HUBER, W.; ANDERS, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. **Genome Biology,** v. 15, n. 12, 2014 2014. ISSN 1465-6906. Disponível em: < <Go to ISI>://WOS:000346609500022 >.

MAGOC, T.; WOOD, D.; SALZBERG, S. L. EDGE-pro: Estimated Degree of Gene Expression in Prokaryotic Genomes. **Evolutionary Bioinformatics**, v. 9, 2013 2013. ISSN 1176-9343. Disponível em: < <Go to ISI>://WOS:000317569800001 >.

MALAMUD, F. et al. The *Xanthomonas axonopodis* pv. *citri* flagellum is required for mature biofilm and canker development. **Microbiology**, v. 157, n. 3, p. 819-829, 2011.

MAO, F. et al. DOOR: a database for prokaryotic operons. **Nucleic Acids Research,** v. 37, p. D459-D463, Jan 2009. ISSN 0305-1048. Disponível em: < Go to ISI>://WOS:000261906200083 >.

MATTICK, J. S. Type IV pili and twitching motility. **Annual Reviews in Microbiology**, v. 56, n. 1, p. 289-314, 2002.

MCELDOWNEY, S.; FLETCHER, M. Variability of the influence of physicochemical factors affecting bacterial adhesion to polystyrene substrata. **Appl. Environ. Microbiol**., v. 52, n. 3, p. 460-465, 1986.

MENDOZA, E. F. R. **Identificação de genes-alvos na patogenicidade de** *Xanthomonas citri* **subsp.** *citri* **com enfoque no sistema de secreção tipo III**. Tese (Doutorado em Microbiologia Agropecuária), Universidade Estadual Paulista, São Paulo, 2016.

MOREIRA, L. M. et al. Comparative genomics analyses of citrus-associated bacteria. Annu. Rev. Phytopathol., v. 42, p. 163-184, 2004.

MOREIRA, L. M. et al. Comparative analyses of *Xanthomonas* and *Xylella* complete genomes. **Omics-a Journal of Integrative Biology,** v. 9, n. 1, p. 43-76, Mar 2005. ISSN 1536-2310. Disponível em: < <Go to ISI>://WOS:000228645900005 >.

MURANAKA, L. S. et al. N-Acetylcysteine in agriculture, a novel use for an old molecule: focus on controlling the plant–pathogen *Xylella fastidiosa*. **PLoS One**, v. 8, n. 8, p. e72937, 2013.

MURAYAMA, N. et al. Evidence for Involvement of *Escherichia coli* Genes pmbA, csrA and a Previously Unrecognized Gene tldD, in the Control of DNA Gyrase by letD (ccdB) of Sex Factor F. **Journal of molecular biology**, v. 256, n. 3, p. 483-502, 1996.

MURRAY, T. S.; KAZMIERCZAK, B. I. *Pseudomonas aeruginosa* exhibits sliding motility in the absence of type IV pili and flagella. **Journal of bacteriology**, v. 190, n. 8, p. 2700-2708, 2008.

NAVARRO, M. V. et al. Structural analysis of the GGDEF-EAL domain-containing c-di-GMP receptor FimX. **Structure**, v. 17, n. 8, p. 1104-1116, 2009.

NEVES, M. F. O retrato da citricultura brasileira. Ribeirão Preto. 1: 137 p. 2010.

NEWMAN, J. R.; FUQUA, C. Broad-host-range expression vectors that carry the L-arabinose-inducible *Escherichia coli* araBAD promoter and the araC regulator. **Gene**, v. 227, n. 2, p. 197-203, Feb 18 1999. ISSN 0378-1119. Disponível em: < Go to ISI>://WOS:000078894300009 >.

NUDLEMAN, E.; KAISER, D. Pulling together with type IV pili. Journal of molecular microbiology and biotechnology, v. 7, n. 1-2, p. 52-62, 2004.

OKA, G. U. **Estudos funcionais e bioquímicos sobre o reconhecimento e inibição de efetores de um sistema de secreção tipo IV de Xanthomonas citri subsp. citri**. 2017. Tese (Doutorado em Bioquímica) - Instituto de Química, Universidade de São Paulo, São Paulo, 2017. doi:10.11606/T.46.2017.tde-14122017-111951. Acesso em: 2019-06-18.

OLIVEIRA, A. C. P. et al. Transposons and pathogenicity in *Xanthomonas*: acquisition of murein lytic transglycosylases by TnXax1 enhances *Xanthomonas citri* subsp. *citri* 306 virulence and fitness. **PeerJ**, v. 6, p. e6111, 2018.

OLIVEIRA, M. C. **Caracterização bioquímica e funcional de diguanilato ciclases de** *Xanthomonas citri* **subsp.***citri*. 2015. Tese (Doutorado em Bioquímica) - Instituto de Química, Universidade de São Paulo, São Paulo, 2015. doi:10.11606/T.46.2015.tde-20072015-110032. Acesso em: 2019-07-02.

OPHIR, T.; GUTNICK, D. L. A role for exopolysaccharides in the protection of microorganisms from desiccation. **Appl. Environ. Microbiol.**, v. 60, n. 2, p. 740-745, 1994.

O'TOOLE, G. A.; KOLTER, R. Flagellar and twitching motility are necessary for *Pseudomonas aeruginosa* biofilm development. **Molecular microbiology**, v. 30, n. 2, p. 295-304, 1998.

O'TOOLE, G. A.; KOLTER, R. Initiation of biofilm formation in *Pseudomonas fluorescens* WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. **Molecular microbiology**, v. 28, n. 3, p. 449-461, 1998.

PARSEK, M. R.; FUQUA, C. Biofilms 2003: emerging themes and challenges in studies of surfaceassociated microbial life. **Journal of bacteriology**, v. 186, n. 14, p. 4427-4440, 2004.

PARSEK, M. R.; SINGH, P. K. Bacterial biofilms: an emerging link to disease pathogenesis. **Annual Reviews in Microbiology**, v. 57, n. 1, p. 677-701, 2003.

PICCHI, S. C. et al. N-acetylcysteine interferes with the biofilm formation, motility and epiphytic behaviour of *Xanthomonas citri* subsp. *citri*. **Plant Pathology**, v. 65, n. 4, p. 561-569, 2016.

POLIDOROS, A. N.; MYLONA, P. V.; SCANDALIOS, J. G. Transgenic tobacco plants expressing the maize Cat2 gene have altered catalase levels that affect plant-pathogen interactions and resistance to oxidative stress. **Transgenic Research**, v. 10, n. 6, p. 555-569, 2001.

QIAN, W.; HAN, Z.-J.; HE, C. Two-component signal transduction systems of *Xanthomonas* spp.: A lesson from genomics. **Molecular Plant-Microbe Interactions,** v. 21, n. 2, p. 151-161, Feb 2008. ISSN 0894-0282. Disponível em: <<Go to ISI>://WOS:000252458600001 >.

RIGANO, L. A. et al. Biofilm formation, epiphytic fitness, and canker development in *Xanthomonas axonopodis* pv *citri*. **Molecular Plant-Microbe Interactions**, v. 20, n. 10, p. 1222-1230, Oct 2007. ISSN 0894-0282. Disponível em: < <Go to ISI>://WOS:000251637500006 >.

RODRÍGUEZ-ROJAS, Alexandro; BLÁZQUEZ, Jesús. The *Pseudomonas aeruginosa* pfpl gene plays an antimutator role and provides general stress protection. **Journal of bacteriology**, v. 191, n. 3, p. 844-850, 2009.

RUEDEN, CURTIS T. et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC bioinformatics, v. 18, n. 1, p. 529, 2017.

RYAN, R. P. Cyclic di-GMP signalling and the regulation of bacterial virulence. **Microbiology**, v. 159, n. Pt 7, p. 1286, 2013.

RYAN, R. P. et al. Pathogenomics of *Xanthomonas*: understanding bacterium-plant interactions. **Nature Reviews Microbiology,** v. 9, n. 5, p. 344-355, May 2011. ISSN 1740-1526. Disponível em: < <Go to ISI>://WOS:000289548800016 >.

SAMBROOK, J.; FRITSCH, E. F.; MANIATIS, T., Eds. **Molecular Cloning: A Laboratory Mannual**: Cold Spring Harbor Laboratoryed. 1989.

SANCHES, A. L. R. et al. Análise econômica da prevenção e controle do cancro cítrico no estado de São Paulo. **Revista de Economia e Sociologia Rural,** v. 52, n. 3, p. 549-566, 2014-09 2014. ISSN 1806-9479. Disponível em: < <Go to ISI>://SCIELO:S0103-20032014000300008 >.

SHU, C.; YANG, Shang-Tian. Effects of temperature on cell growth and xanthan production in batch cultures of *Xanthomonas campestris*. **Biotechnology and bioengineering**, v. 35, n. 5, p. 454-468, 1990.

SIMM, R. et al. GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. **Molecular Microbiology**, v. 53, n. 4, p. 1123-1134, Aug 2004. ISSN 0950-382X. Disponível em: < <Go to ISI>://WOS:000223157300011 >.

SKERKER, J. M. et al. Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: A system-level analysis. **Plos Biology**, v. 3, n. 10, p. 1770-1788, Oct 2005. ISSN 1545-7885. Disponível em: < <Go to ISI>://WOS:000232404600011 >.

SOUZA, D. P. et al. Bacterial killing via a type IV secretion system. **Nature communications**, v. 6, p. 6453, 2015.

STAHL, E. A.; BISHOP, J. G. Plant-pathogen arms races at the molecular level. **Current Opinion in Plant Biology,** v. 3, n. 4, p. 299-304, Aug 2000. ISSN 1369-5266. Disponível em: < <Go to ISI>://WOS:000088052900005 >.

SUMAN, E., et al. Anti-biofilm and anti-adherence activity of Glm-U inhibitors. Indian journal of medical sciences 65:387-392, 2011.

SUMARES JA, MORÃO LG, MARTINS PM, et al. Temperature stress promotes cell division arrest in *Xanthomonas citri* subsp. *citri*. **Microbiologyopen.** 2015;5(2):244–253. doi:10.1002/mbo3.323.

TABOADA, B. et al. ProOpDB: Pro karyotic Op eron D ata B ase. **Nucleic acids research**, v. 40, n. D1, p. D627-D631, 2011.

TAMMAM, S. et al. Characterization of the PilN, PilO and PilP type IVa pilus subcomplex. **Molecular microbiology**, v. 82, n. 6, p. 1496-1514, 2011.

TAO, F.; SWARUP, S.; ZHANG, L. Quorum sensing modulation of a putative glycosyltransferase gene cluster essential for *Xanthomonas campestris* biofilm formation. **Environmental microbiology**, v. 12, n. 12, p. 3159-3170, 2010.

TEIXEIRA, R. D. **Estudo de proteínas GGDEF-EAL em vias de sinalização de c-di-GMP em** *Xanthomonas citri* **subsp.** *citri.* 2015. (Doutorado). Departamento de Bioquímica, Universidade de São Paulo, Instituto de Química.

TEIXEIRA, R. D. et al. A bipartite periplasmic receptor–diguanylate cyclase pair (XAC2383–XAC2382) in the bacterium *Xanthomonas citri*. Journal of Biological Chemistry, v. 293, n. 27, p. 10767-10781, 2018.

THOMPSON, J. D.; HIGGINS, D. G.; GIBSON, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. **Nucleic acids research**, v. 22, n. 22, p. 4673-4680, 1994.

TORRES, J. P.; MARINGONI, A. C.; SILVA, T. A. F., JR. Survival of *Xanthomonas axonopodis* pv. *phaseoli* var. *fuscans* in common bean leaflets on soil. **Journal of Plant Pathology,** v. 91, n. 1, p. 195-198, Mar 2009. ISSN 1125-4653. Disponível em: < <Go to ISI>://WOS:000264799700024 >.

TROKTER, M. et al. Recent advances in the structural and molecular biology of type IV secretion systems. **Current opinion in structural biology**, v. 27, p. 16-23, 2014.

TUNES, S. Remédio para as laranjeiras. Revista Pesquisa FAPESP. nº 276, p. 66-69, Fev 2019

TSAI, JENG-WEN; ALLEY, M. R. K. Proteolysis of the McpA chemoreceptor does not require the *Caulobacter* major chemotaxis operon. **Journal of Bacteriology**, v. 182, n. 2, p. 504-507, 2000.

TSENG, T.-T.; TYLER, B. M.; SETUBAL, J. C. Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. **Bmc Microbiology**, v. 9, Feb 19 2009. ISSN 1471-2180. Disponível em: < <Go to ISI>://WOS:000278205700002 >.

VARGA, J. J.; THERIT, B.; MELVILLE, S. B. Type IV pili and the CcpA protein are needed for maximal biofilm formation by the gram-positive anaerobic pathogen *Clostridium perfringens*. Infection and immunity, v. 76, n. 11, p. 4944-4951, 2008.

VERNIÈRE, C. J.; GOTTWALD, T. R.; PRUVOST, O. Disease Development and Symptom Expression of *Xanthomonas axonopodis* pv. *citri* in Various Citrus Plant Tissues. **Phytopathology,** v. 93, n. 7, p. 832-843, Jul 2003. ISSN 0031-949X. Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/18943164 >.

WAKSMAN, G.; ORLOVA, E. V. Structural organisation of the type IV secretion systems. **Current opinion** in microbiology, v. 17, p. 24-31, 2014.

WHITFIELD, C.; SUTHERLAND, I. W.; CRIPPS, R. E. Surface polysaccharides in mutants of *Xanthomonas campestris*. **Microbiology**, v. 124, n. 2, p. 385-392, 1981.

WU, W., e JIN S. PtrB of *Pseudomonas aeruginosa* suppresses the type III secretion system under the stress of DNA damage. **J Bacteriol** 187:6058-6068. 2005.

YAN, Q.; WANG, N. The ColR/ColS Two-Component System Plays Multiple Roles in the Pathogenicity of the Citrus Canker Pathogen *Xanthomonas citri* subsp *citri*. **Journal of Bacteriology,** v. 193, n. 7, p. 1590-1599, Apr 2011. ISSN 0021-9193. Disponível em: < <Go to ISI>://WOS:000288314400011 >.

YANG, F. et al. A Novel Two-Component System PdeK/PdeR Regulates c-di-GMP Turnover and Virulence of *Xanthomonas oryzae* pv. *oryzae*. **Molecular Plant-Microbe Interactions,** v. 25, n. 10, p. 1361-1369, Oct 2012. ISSN 0894-0282. Disponível em: < <Go to ISI>://WOS:000308781000009 >.

ZHANG, S.-S. et al. A putative colR(XC1049)-col(XC1050) two-component signal transduction system in *Xanthomonas campestris* positively regulates hrpC and hrpE operons and is involved in virulence, the hypersensitive response and tolerance to various stresses. **Research in Microbiology,** v. 159, n. 7-8, p. 569-578, Sep-Oct 2008. ISSN 0923-2508. Disponível em: < <Go to ISI>://WOS:000260546600011 >.

ZHENG, D. et al. Two overlapping two-component systems in *Xanthomonas oryzae* pv. *oryzae* contribute to full fitness in rice by regulating virulence factors expression. **Scientific Reports,** v. 6, Mar 9 2016. ISSN 2045-2322. Disponível em: < <Go to ISI>://WOS:000371604700002 >.

SÚMULA CURRICULAR

DADOS PESSOAIS

Nome: Duilio Rodrigues de Oliveira Nacionalidade: Brasileira Naturalidade: Suzano – SP Data de nascimento: 04/05/1989 e-mail: duilio.oliveira@usp.br; duiliordo@gmail.com

FORMAÇÃO ACADÊMICA

Pós-graduação

2016 – 2019 Mestrado em Ciências Biológicas (Bioquímica)
 Universidade de São Paulo
 Instituto de Química – Departamento de Bioquímica
 São Paulo, SP
 Título: Caracterização funcional de sistemas de dois componentes em *Xanthomonas citri.* Orientadora: Profa. Dra. Regina Lúcia Baldini
 Bolsista da CAPES

Ensino Superior

- 2011 2018Licenciatura em Ciências BiológicasInstituto de Biociências Universidade de São Paulo
- 2011 2015 Bacharelado em Ciências Biológicas
 Instituto de Biociências Universidade de São Paulo, USP, Brasil
 com um período de intercâmbio na Universidade de Bergen Noruega de
 08/2013 a 07/2014 pelo programa Ciência sem Fronteiras.
 Orientadora: Prof. Dra. Regina Lúcia Baldini

FORMAÇÃO COMPLEMENTAR _____

2018 V Escola Regional de Microbiologia – Conhecendo o inimigo: Ferramentas para o estudo das interações entre bactérias e seus hospedeiros (Carga horária: 80 h)

 Instituto de Higiene de Montevideo - Uruguai 2018 Assistente de ensino. Monitoria da disciplina de graduação de biologia molecular Professores: Aline Maria da Silva and Eduardo Moraes Rego Reis. Instituto de Química – USP. 2017 Assistente de ensino. Monitoria da disciplina de graduação de bioquímica. Professores: Alexander Henning Ulrich and Alexandre Bruni Cardoso. Instituto de Química – USP. 2017 Monitoria e organização do XII Curso de Verão em Bioquímica e Biologia Molecular. (Carga horária: 100h). Instituto de Química – USP. 2016 V Curso de Verão em Biologia Celular e do Desenvolvimento. (Carga horária: 60h). Instituto de Ciências Biomédicas – USP.
 2018 Assistente de ensino. Monitoria da disciplina de graduação de biologia molecular Professores: Aline Maria da Silva and Eduardo Moraes Rego Reis. Instituto de Química – USP. 2017 Assistente de ensino. Monitoria da disciplina de graduação de bioquímica. Professores: Alexander Henning Ulrich and Alexandre Bruni Cardoso. Instituto de Química – USP. 2017 Monitoria e organização do XII Curso de Verão em Bioquímica e Biologia Molecular. (Carga horária: 100h). Instituto de Química – USP. 2016 V Curso de Verão em Biologia Celular e do Desenvolvimento. (Carga horária: 60h). Instituto de Ciências Biomédicas – USP. 2015 IV Curso de Lideranca (Coaching) da EMV/Z (Carga horária: 59h)
 2018 Assistente de ensino. Monitoria da disciplina de graduação de biologia molecular Professores: Aline Maria da Silva and Eduardo Moraes Rego Reis. Instituto de Química – USP. 2017 Assistente de ensino. Monitoria da disciplina de graduação de bioquímica. Professores: Alexander Henning Ulrich and Alexandre Bruni Cardoso. Instituto de Química – USP. 2017 Monitoria e organização do XII Curso de Verão em Bioquímica e Biologia Molecular. (Carga horária: 100h). Instituto de Química – USP. 2016 V Curso de Verão em Biologia Celular e do Desenvolvimento. (Carga horária: 60h). Instituto de Ciências Biomédicas – USP. 2015 IV Curso de Lideranca (Coaching) da EMVZ. (Carga horária: 59h)
 Monitoria da disciplina de graduação de biologia molecular Professores: Aline Maria da Silva and Eduardo Moraes Rego Reis. Instituto de Química – USP. 2017 Assistente de ensino. Monitoria da disciplina de graduação de bioquímica. Professores: Alexander Henning Ulrich and Alexandre Bruni Cardoso. Instituto de Química – USP. 2017 Monitoria e organização do XII Curso de Verão em Bioquímica e Biologia Molecular. (Carga horária: 100h). Instituto de Química – USP. 2016 V Curso de Verão em Biologia Celular e do Desenvolvimento. (Carga horária: 60h). Instituto de Ciências Biomédicas – USP. 2015 M/ Curso de Lideranca (Coaching) da EMVZ (Carga horária: 59h)
 Professores: Aline Maria da Silva and Eduardo Moraes Rego Reis. Instituto de Química – USP. 2017 Assistente de ensino. Monitoria da disciplina de graduação de bioquímica. Professores: Alexander Henning Ulrich and Alexandre Bruni Cardoso. Instituto de Química – USP. 2017 Monitoria e organização do XII Curso de Verão em Bioquímica e Biologia Molecular. (Carga horária: 100h). Instituto de Química – USP. 2016 V Curso de Verão em Biologia Celular e do Desenvolvimento. (Carga horária: 60h). Instituto de Ciências Biomédicas – USP. 2015 IV Curso de Lideranca (Coaching) da EMVZ. (Carga horária: 59h)
 Instituto de Química – USP. 2017 Assistente de ensino. Monitoria da disciplina de graduação de bioquímica. Professores: Alexander Henning Ulrich and Alexandre Bruni Cardoso. Instituto de Química – USP. 2017 Monitoria e organização do XII Curso de Verão em Bioquímica e Biologia Molecular. (Carga horária: 100h). Instituto de Química – USP. 2016 V Curso de Verão em Biologia Celular e do Desenvolvimento. (Carga horária: 60h). Instituto de Ciências Biomédicas – USP. 2015 IV Curso de Lideranca (Coaching) da EMV/Z (Carga horária: 59h)
 2017 Assistente de ensino. Monitoria da disciplina de graduação de bioquímica. Professores: Alexander Henning Ulrich and Alexandre Bruni Cardoso. Instituto de Química – USP. 2017 Monitoria e organização do XII Curso de Verão em Bioquímica e Biologia Molecular. (Carga horária: 100h). Instituto de Química – USP. 2016 V Curso de Verão em Biologia Celular e do Desenvolvimento. (Carga horária: 60h). Instituto de Ciências Biomédicas – USP. 2015 IV Curso de Lideranca (Coaching) da EMV/Z (Carga horária: 59h)
 2017 Assistente de ensino. Monitoria da disciplina de graduação de bioquímica. Professores: Alexander Henning Ulrich and Alexandre Bruni Cardoso. Instituto de Química – USP. 2017 Monitoria e organização do XII Curso de Verão em Bioquímica e Biologia Molecular. (Carga horária: 100h). Instituto de Química – USP. 2016 V Curso de Verão em Biologia Celular e do Desenvolvimento. (Carga horária: 60h). Instituto de Ciências Biomédicas – USP. 2015 IV Curso de Lideranca (Coaching) da EMV/Z (Carga horária: 59b)
 Monitoria da disciplina de graduação de bioquímica. Professores: Alexander Henning Ulrich and Alexandre Bruni Cardoso. Instituto de Química – USP. 2017 Monitoria e organização do XII Curso de Verão em Bioquímica e Biologia Molecular. (Carga horária: 100h). Instituto de Química – USP. 2016 V Curso de Verão em Biologia Celular e do Desenvolvimento. (Carga horária: 60h). Instituto de Ciências Biomédicas – USP. 2015 IV Curso de Lideranca (Coaching) da EMVZ (Carga horária: 59h)
 Professores: Alexander Henning Ulrich and Alexandre Bruni Cardoso. Instituto de Química – USP. 2017 Monitoria e organização do XII Curso de Verão em Bioquímica e Biologia Molecular. (Carga horária: 100h). Instituto de Química – USP. 2016 V Curso de Verão em Biologia Celular e do Desenvolvimento. (Carga horária: 60h). Instituto de Ciências Biomédicas – USP. 2015 IV Curso de Liderança (Coaching) da EMVZ (Carga horária: 59h)
 Instituto de Química – USP. Monitoria e organização do XII Curso de Verão em Bioquímica e Biologia Molecular. (Carga horária: 100h). Instituto de Química – USP. V Curso de Verão em Biologia Celular e do Desenvolvimento. (Carga horária: 60h). Instituto de Ciências Biomédicas – USP. INSTITUTO de Liderança (Coaching) da EMVZ (Carga horária: 59h)
 2017 Monitoria e organização do XII Curso de Verão em Bioquímica e Biologia Molecular. (Carga horária: 100h). Instituto de Química – USP. 2016 V Curso de Verão em Biologia Celular e do Desenvolvimento. (Carga horária: 60h). Instituto de Ciências Biomédicas – USP. 2015 IV Curso de Liderança (Coaching) da EMVZ (Carga horária: 59h)
 2017 Monitoria e organização do XII Curso de Verão em Bioquímica e Biologia Molecular. (Carga horária: 100h). Instituto de Química – USP. 2016 V Curso de Verão em Biologia Celular e do Desenvolvimento. (Carga horária: 60h). Instituto de Ciências Biomédicas – USP. 2015 IV Curso de Liderança (Coaching) da EMVZ (Carga horária: 59h)
 Molecular. (Carga horária: 100h). Instituto de Química – USP. 2016 V Curso de Verão em Biologia Celular e do Desenvolvimento. (Carga horária: 60h). Instituto de Ciências Biomédicas – USP. 2015 IV Curso de Liderança (Coaching) da EMVZ (Carga horária: 59h)
 Instituto de Química – USP. V Curso de Verão em Biologia Celular e do Desenvolvimento. (Carga horária: 60h). Instituto de Ciências Biomédicas – USP. IV Curso de Liderança (Coaching) da EMVZ (Carga horária: 59h)
 2016 V Curso de Verão em Biologia Celular e do Desenvolvimento. (Carga horária: 60h). Instituto de Ciências Biomédicas – USP. 2015 IV Curso de Liderança (Coaching) da EMVZ (Carga horária: 59h)
 2016 V Curso de Verão em Biologia Celular e do Desenvolvimento. (Carga horária: 60h). Instituto de Ciências Biomédicas – USP. 2015 IV Curso de Liderança (Coaching) da EMVZ (Carga horária: 59h)
60h). Instituto de Ciências Biomédicas – USP. 2015 IV Curso de Liderança (Coaching) da EMVZ (Carga horária: 59h)
Instituto de Ciências Biomédicas – USP.
2015 IV Curso de Lideranca (Coaching) da EMVZ (Carga horária: 59h)
2015 IV Curso de Lideranca (Coaching) da EMVZ (Carga horária: 59h)
Faculdade de Medicina Veterinária e Zootecnia – USP.
2015 2 ^o Minicurso: Transcriptómica com RNA-seq. (Carga horaria: 8h).
Centro de Facilidades de Apoio a Pesquisa, CEFAP – USP.
2012 2014 Intersâmbie acadâmice. Delce de estudes: Ciâncie com Fronteiros (08/2012 a
2013 – 2014 Intercambio academico. Boisa de estudos: Ciencia sem Fronteiras. (08/2013 a
07/2014) - Oniversidade de Bergen, Nordega.
2013 VII Curso de Verão em Bioquímica e Biologia Molecular. (Carga horária: 80h)
Instituto de Química - USP. IO - USP.
2011 – 2015 Iniciação científica – Bolsa PIBIC
Orientadora: Prof. Dra. Regina Lúcia Baldini

Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brasil.

PROJETOS DE PESQUISA_____

- 2016 Atual A correlação entre o segundo mensageiro c-di-GMP e os sistemas de dois componentes em Xanthomonas citri.
 Bolsa de estudos: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior. CAPES.
- 2014 2015 O segundo mensageiro c-di-GMP e a adaptação a antibióticos de *Xanthomonas citri*.
 Bolsa de estudos: Programa Institucional de Bolsas de Iniciação Científica. PIBIC.
- 2011 2013 Análise proteômica de linhagens de Xanthomonas citri expressando níveis alterados do segundo mensageiro c-di-GMP.
 Bolsa de estudos: Programa Institucional de Bolsas de Iniciação Científica. PIBIC.

APRESENTAÇÕES DE TRABALHO_____

OLIVEIRA, D. R.; BALDINI, R. L. The correlation between the second messenger c-di-GMP and two-component regulatory systems in Xanthomonas citri. 2018 (Congresso).

OLIVEIRA, D. R.; TEIXEIRA, R. D. ; FARAH, S. C. ; BALDINI, R. L. Análise do proteoma de linhagens de *Xanthomonas citri* expressando níveis alterados do segundo mensageiro c-di-GMP. 2015. (Congresso).

OLIVEIRA, D. R.; TEIXEIRA, R. D. ; FARAH, S. C. ; BALDINI, R. L. O segundo mensageiro c-di-GMP e a adaptação a antibióticos de *Xanthomonas citri*. 2015. (Simpósio).

OLIVEIRA, D. R.; TEIXEIRA, R. D. ; FARAH, S. C. ; BALDINI, R. L. Análise do proteoma de linhagens de *Xanthomonas citri* expressando níveis alterados do segundo mensageiro c-di-GMP. 2014. (Simpósio).

APÊNDICE A

Análise proteômica por géis bidimensionais.

Comparando os perfis de expressão dos proteomas das linhagens WT/pBRA e Δ*XAC2382*/pBRA, foram identificados 18 spots diferencialmente expressos (**Figura 1**). A mesma abordagem foi utilizada para verificar a expressão diferencial em uma linhagem construída que superexpressa XAC2382, mas não foi possível conseguir proteína suficiente para realizar o ensaio, provavelmente devido a uma interferência provocada pela grande quantidade de goma xantana nessa condição (**Figura 2**).

Além dos dados iniciais dos proteomas das linhagens WT/pBRA e ΔXAC2382/pBRA, foram obtidos novos dados dessas linhagens ao refazer todo o processo de extração, focalização isoelétrica e SDS-PAGE, com novas culturas destas linhagens e, dessa vez, obtendo 65 spots diferencialmente expressos (**Figura 3**).

Os 18 spots do primeiro ensaio foram enviados para análise e identificação por espectrometria de massa no LNBio em Campinas, mas 4 não foram identificados (spots 6, 9, 15 e 17) porque havia pouca proteína. Das 14 proteínas identificadas, 7 estavam mais expressas em WT/pBRA (**Tabela 1**).

Os 59 spots do segundo ensaio foram enviados para análise em uma *facility* no Canadá, e destes 20 foram identificados, sendo que 13 destas proteínas encontram-se mais expressas em Δ*XAC2382*/pBRA (**Tabela 2**).

Comparando os géis bidimensionais obtidos da cepa Δ*XAC0258/ΔXAC1420* com os géis da cepa WT, foi possível observar 27 proteínas diferencialmente expressas, como indicado na **Figura 4**; enquanto que comparando os géis bidimensionais obtidos da cepa ΔXAC0258/ΔXAC1940 com os géis da cepa WT, foi possível observar 19 proteínas diferencialmente expressas, como indicado na **Figura 5**.

Figura 1. Extrato proteico total do primeiro ensaio de WT/pBRA (azul) e ΔXAC2382/pBRA (vermelho) submetidos à eletroforese bidimensional. Os spots diferencialmente expressos numerados de 1 a 18 foram detectados a olho nu e confirmados como diferencialmente expressos estatisticamente pelo testet (p<0,03) do programa Delta 2D (Decodon). Todas as proteínas diferencialmente expressas foram enviadas para identificação por espectrometria de massa.

Figura 2. Exemplos de géis com extrato proteico total de WT/superexpressão de XAC2382, submetidos à eletroforese bidimensional.

Figura 3. Extrato proteico total do segundo ensaio de WT/pBRA (azul) e ΔXAC2382/pBRA (vermelho) submetidos à eletroforese bidimensional. Os spots diferencialmente expressos numerados de 1 a 65, exceto por 12, 30, 49, 51, 52 e 53, que não são mostrados por não terem sido encontrados no gel para o recorte, foram detectados a olho nu e confirmados como diferencialmente expressos estatisticamente pelo teste-t (p<0,03) do programa Delta 2D (Decodon). Todas proteínas diferencialmente expressas foram enviadas para identificação por espectrometria de massa.

Tabela 1. Spots diferencialmente expressos identificados no primeiro ensaio de eletroforese

Spot*	Proteína	Número de acesso	Gene #	Cobertura R de Δ	azão (WT/ XAC2382)	Teste t (p<0,03)
		(GI)**		Sequencia		
1	acetylornithine transaminase	21244154	XAC3429	23	1,45717	99,51703
	molecular chaperone DnaJ [Xanthomonas campestris pv. campestris str. ATCC 33913]	21230930	XCC1475	08		
2	porphobilinogen synthase [Xanthomonas vesicatoria ATCC 35937]	325914546	XVE_0761	23	7,27785	99,91149
	50S ribosomal protein L10	21241728	XAC0963	24		
3	pyruvate dehydrogenase E1 component subunit beta [Xanthomonas citri pv. mangiferaeindicae LMG 941]	381171641	XMIN_2250	25	6,32761	97,61893
	delta-aminolevulinic acid dehydratase	21244757	XAC4040	13		
	hypothetical protein XAC2810	21243537	XAC2810	09		
4	polyphosphate-selective porin O	21244197	XAC3472	30	1,79314	98,36207
	acyl-CoA dehydrogenase [Xanthomonas campestris pv. vesicatoria str. 85-10]	78046920	XCV1364	07		
5	hypothetical protein XAC3726	21244451	XAC3726	48	0,05456	99,6588
7	glucosamine-fructose-6- phosphate aminotransferase	77748548	XAC0714	50	0,75424	98,03793
8	glycyl-tRNA synthetase subunit alpha	21244928	XAC4211	15	0,81253	99,27878
10	Oxidoreductase	21241932	XAC1178	13	0,03289	97,79369
11	stationary phase survival protein SurE	21242474	XAC1175	27	1,35298	97,71085
	phenylalanine 4- monooxygenase	21240948	XAC0174	09		
12	hypothetical protein XAC3657	21244382	XAC3657	19	0,39873	97,95317
13	hypothetical protein XAC3966	21244684	XAC3966	43	0,16689	98,55483
14	succinate dehydrogenase iron-sulfur subunit	21242817	XAC2078	18	0,2235	98,7091
16	ribosome recycling factor	21242171	XAC1418	30	1,64881	97,64098
18	50S ribosomal protein L10	21241728	XAC0963	56	1,31614	99,59279

bidimensional comparando-se as proteínas totais das linhagens WT/pBRA e ΔXAC2382/pBRA.

* Número do spot correspondente ao gel mostrado na Figura 1.

**Número de acesso da proteína no National Center for Biotechnology Information (NCBI).
Spot*	Proteína	Número de acesso (GI)**	Gene #	Cobertura de Sequência (%)	Razão (WT/ Δ <i>XAC2382</i>)	Teste t (p<0,03)
2	oxoglutarate dehydrogenase	77748592	XAC1535	05	2,34184	97,62
	thioredoxin reductase	21242749	XAC2005	15	2,34184	97,62
15	molecular chaperone DnaK	21242273	XAC1522	38	4,83026	99,37
17	glucosaminefructose-6-phosphate aminotransferase	21244362	XAC3637	43	3,49827	99,99
21	hypothetical protein XAC1537	21242288	XAC1537	39	0,14975	99,97
23	pyruvate kinase	21244070	XAC3345	23	3,60671	99,71
	histidine ammonia-lyase	21242387	XAC1637	19	3,60671	99,71
26	hypothetical protein XAC0019	21240793	XAC0019	38	0,06742	100
28	trehalose-6-phosphate synthase	21243937	XAC3211	44	0,28174	99,79
31	phosphopyruvate hydratase	21242468	XAC1719	35	0,29298	99,98
33	phosphopyruvate hydratase	21242468	XAC1719	25	4,02121	99,94
39	D-amino acid dehydrogenase small subunit	21244413	XAC3688	10	0,32062	99,96
40	molecular chaperone DnaJ	21242274	XAC1523	16	0,43965	99,94
	4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase	21242544	XAC1799	20	0,43965	99,94
43	response regulator	21244168	XAC3443	23	2,64939	99 <i>,</i> 43
	elongation factor Tu	21241723	XAC0957	07	2,64939	99 <i>,</i> 43
45	fructose-bisphosphate aldolase	21244069	XAC3344	48	0,46483	99 <i>,</i> 83
48	ribose-phosphate pyrophosphokinase	21241719	XOO3603 (XAC0950)	32	0,42093	99,0533
50	hypothetical protein XAC3657	21244382	XAC3657	30	0,12441	99,87
56	recombinase A	21242489	XAC1740	38	0,19031	99,98
59	Aminopeptidase	21244034	XAC3309	32	0,12573	100
	3-phosphoshikimate 1- carboxyvinyltransferase	21242400	XAC1650	07	0,12573	100
60	TolC protein	21244188	XAC3463	43	0,3869	99,99
	peptidyl-prolyl cis-trans isomerase	21241635	XAC0865	34	0,3869	99,99
61	fructose-bisphosphate aldolase	21244069	XAC3344	24	5,05855	99 <i>,</i> 55
63	Oxidoreductase	21241113	XAC0339	07	0,39278	99,94
	ACP S-malonyltransferase	21241881	XAC1126	06	0,39278	99,94
64	thioredoxin reductase	21242749	XAC2005	29	0,36333	99,61
	exodeoxyribonuclease III	21244621	XAC3902	12	0,36333	99,61

Tabela 2. Spots diferencialmente expressos identificados no segundo ensaio de eletroforese bidimensional comparando-se as proteínas totais das linhagens WT/pBRA e Δ*XAC2382*/pBRA.

* Número do spot correspondente ao gel mostrado na Figura 3.

**Número de acesso da proteína no National Center for Biotechnology Information (NCBI).

Essas proteínas foram identificadas no LNBio por espectrometria de massa e estão apresentadas na **Tabela 3** para a cepa $\Delta XAC0258/\Delta XAC1420$ e na **Tabela 4** para a cepa $\Delta XAC0258/\Delta XAC1940$. Quando possível, tiramos do gel a proteína marcada tanto do gel da cepa selvagem quanto da cepa mutante para que não houvesse dúvidas de que se tratava da mesma proteína.

Figura 5. Extrato proteico total de WT e ΔΧΑC0258/ΔΧΑC1940 submetidos à eletroforese bidimensional. Os spots diferencialmente expressos numerados de 1 a 19 foram confirmados como diferencialmente expressos estatisticamente pelo teste-t (p<0,03) do programa Delta 2D (Decodon). Todas as proteínas diferencialmente expressas foram enviadas para identificação por espectrometria de massa.

Spot*	Proteína	Razão (WT/ ΔΧΑC0258/ ΔΧΑC1420)	Número de acesso (GI)***	Gene #	Cobertura de Sequência (%)**	Teste t (p<0,03)
1	isocitrate dehydrogenase	3,85822	21244559	XAC3835	47	99,97251
2	oligopeptidase B	13,23086	21241402	XAC0631	17	99,98636
	polynucleotide phosphorylase	13,23086	21243412	XAC2683	11	99,98636
3	GTP-binding elongation factor protein	2,42044	21241769	XAC1004	51/25	99,90257
4	Chain A, Alpha-Amino Acid Ester Hydrolase Labeled With Selenomethionine (glutaryl-7- ACA acylase precursor)	6,01105	30749495	XAC2341	27	99,96461
5	GDP-mannose pyrophosphorylase	0,52843	21244305	XAC3580	32/40	99,29357
6	S-adenosyl-L-homocysteine hydrolase	0,42179	21241574	XAC0804	39/31	99,95728
7	glycerol kinase	0,4912	21241132	XAC0358	35/29	99,84958
8	No significant hits to report	0,2149				96,86671
9	phosphoribosylamineglycine ligase	0,585	21241282	XAC0511	21/25	99,80763
10	elongation factor Tu [Azorhizobium caulinodans ORS 571]	0,06833	158422504	AZC_0880	4	98,09184
11	hypothetical protein XAC0019	0,11688	21240793	XAC0019	12	98,85002
12	cell division protein FtsZ	0,28246	77748549	XAC0784	30	97,1772
13	seryl-tRNA synthetase	0,70859	21242403	XAC1653	52	99,34888
14	peptidyl-prolyl cis-trans isomerase	0,70619	21241635	XAC0865	30	99,941
15	response regulator	0,19267	21244168	XAC3443	9	99,21109
16	malate dehydrogenase	0,63586	21241771	XAC1006	77/57	99,90189
17	fructose-bisphosphate aldolase	0,6882	21244069	XAC3344	34/51	99,46219
18	succinyl-CoA synthetase subunit alpha	2,06142	21243961	XAC3235	31/38	99,98162
19	UTP-glucose-1-phosphate uridylyltransferase	0,59315	21243027	XAC2292	22/29	99,92591
20	coproporphyrinogen III oxidase	0,76659	21244826	XAC4109	48	98,60904
21	trehalose-6-phosphate phosphatase	0,36814	21243935	XAC3209	4/34	99,40494
22	glucose-1-phosphate thymidylyltransferase	0,6343	21244309	XAC3584	26/26	99,35916
23	two-component system regulatory protein (CoIR)	0,5588	21241604	XAC0834	42/44	99,94658
24	Enolase	0,62669	21242582	XAC1838	46/40	97,44138
25	partition protein A	0,654	21264203	XACa0018	37/37	99,70266
26	superoxidase dismutase	0,76128	21243120	XAC2386	84/45	99,16155
27	keto-hydroxyglutarate- aldolase/keto-deoxy- phosphogluconate aldolase	0,73276	21242806	XAC2067	40/26	99,97801
	ATP-dependent Clp protease proteolytic subunit	0,73276	21241838	XAC1078	24/16	99,97801

Tabela 3. *Spots* diferencialmente expressos identificados no ensaio de eletroforese bidimensional comparando-se as proteínas totais das linhagens WT e $\Delta XAC0258/\Delta XAC1420$.

* Número do spot correspondente ao gel mostrado na Figura 4.

** Spot identificado nos géis correspondentes às duas cepas analisadas, com os valores de cobertura

mostrados para selvagem (WT) e mutante (Δ*XAC0258*/Δ*XAC1420*).

***Número de acesso da proteína no National Center for Biotechnology Information (NCBI).

Tabela 4. *Spots* diferencialmente expressos identificados no ensaio de eletroforese bidimensional comparando-se as proteínas totais das linhagens WT e ΔΧΑC0258/ΔΧΑC1940.

Spot*	Proteína	Razão (ΔΧΑC0258/ ΔΧΑC1940/ WT)	Número de acesso (GI)***	Gene #	Cobertura de Sequência (%)**	Teste t (p<0,03)
1	isocitrate dehydrogenase	1,64253	21244559	XAC3835	5	96,53711
2	beta-mannosidase	2,06011	21243802	XAC3075	3	98,9607
3	3-hydroxyacyl-CoA dehydrogenase	1,84309	21108237	XAC2013	5/2	95,49216
6	outer membrane hemin receptor	0,52656	21243556	XAC2829	6/3	99,47918
8	succinate dehydrogenase flavoprotein subunit	1,5463	21242816	XAC2077	20/24	96,2373
9	succinate dehydrogenase flavoprotein subunit	2,20374	21242816	XAC2077	5	98,33015
10	choline dehydrogenase	3,12625	21241489	XAC0718	16	99,75279
11	periplasmic protease	0,43764	21242074	XAC1321	6	99,40046
12	glycerol kinase	1,61893	21241132	XAC0358	34	98,42504
13	betaine aldehyde dehydrogenase	1,91663	21241490	XAC0719	32	98,8744
14	glucose-6-phosphate 1- dehydrogenase	2,30613	21242810	XAC2071	19	98,29746
15	homogentisate 1,2-dioxygenase	0,59398	21241227	XAC0454	31/32	95,04077
16	6-phosphogluconate dehydrogenase	1,62046	21241451	XAC0680	22/29	95,5984
17	No significant hits to report	0,50924				95,38333
18	hypothetical protein XAC3657	2,03453	21244382	XAC3657	37/35	98,49212
19	bacterioferritin	2,43485	21241903	XAC1149	35/30	95,86618

* Número do spot correspondente ao gel mostrado na Figura 5.

** Spot identificado nos géis correspondentes às duas cepas analisadas, com os valores de cobertura mostrados para selvagem (WT) e mutante (ΔΧΑC0258/ΔΧΑC1940).

*** Número de acesso da proteína no National Center for Biotechnology Information (NCBI).

Em seguida foi feita a análise proteômica dos mutantes simples $\Delta XAC1420 e \Delta XAC1940$. Comparando os géis bidimensionais obtidos da cepa $\Delta XAC1420$ com os géis da cepa WT, pudemos observar 37 proteínas diferencialmente expressas indicadas na **Figura 6**; enquanto que comparando os géis bidimensionais obtidos da cepa $\Delta XAC1940$ com os géis da cepa WT, pudemos observar 17 proteínas diferencialmente expressas indicadas na **Figura 7**. A identificação dessas proteínas também foi feita por espectrometria de massa. As proteínas que tiveram quantidade suficiente para sua identificação nessas análises estão indicadas nas **Tabelas 5** e **6**, respectivamente.

Figura 6. Extrato proteico total de WT e ΔΧΑC1420 submetidos à eletroforese bidimensional. As cepas foram crescidas em meio 2xTY, após atingir uma D.O._{600nm} entre 0.8 – 1.2, correspondente à fase log de crescimento, suas proteínas foram extraídas e separadas por eletroforese bidimensional em géis desnaturantes de poliacrilamida 12% (SDS-PAGE), com proteínas separadas numa faixa de pH 3 a 10 da esquerda para a direita. Os spots diferencialmente expressos numerados de 1 a 37 foram confirmados como diferencialmente expressos estatisticamente pelo teste-t (p<0,03) do programa Delta 2D (Decodon). Todas as proteínas diferencialmente expressas foram enviadas para identificação por espectrometria de massa.

Figura 7. Extrato proteico total de WT e ΔΧΑC1940 submetidos à eletroforese bidimensional. As cepas foram crescidas em meio 2xTY, após atingir uma D.O._{600nm} entre 0.8 – 1.2, correspondente à fase log de crescimento, suas proteínas foram extraídas e separadas por eletroforese bidimensional em géis desnaturantes de poliacrilamida 12% (SDS-PAGE), com proteínas separadas numa faixa de pH 3 a 10 da esquerda para a direita. Os spots diferencialmente expressos numerados de 1 a 17 foram confirmados como diferencialmente expressos estatisticamente pelo teste-t (p<0,03) do programa Delta 2D (Decodon). Todas as proteínas diferencialmente expressas foram enviadas para identificação por espectrometria de massa.

Tabela	5.	Spots	diferencialmente	expressos	identificados	no	ensaio	de	eletroforese
bidime	nsio	nal con	parando-se as pro	teínas totai	s das linhagens	wT	e Δ <i>ΧΑC</i> 2	1940	

Spot*	Proteína	Razão (ΔXAC1940/ WT)	Número de acesso ***	Gene #	Cobertura de Sequência (%)**	рІ
1	Oar protein	0,699	AAM37588	XAC2743	4	4.92
2	conserved hypothetical protein	0,715	AAM37165	XAC2312	11	5.27
5	ABC transporter ATP-binding protein [Xanthomonas oryzae pv. oryzae KACC 10331]	1,652	AAW77117	XOO3863	8	6.10
6	peptidyl-prolyl cis-trans isomerase	1,9	AAM35753	XAC0865	2	5.43
12	putative secreted protein	4,172	CCF67443	XAPC_1135	23	4.59
13	two-component system regulatory protein	2,089	AAM35722	XAC0834	26	6.03
14	alkyl hydroperoxide reductase [Xanthomonas vasicola pv. vasculorum NCPPB 895]	0,671	KEZ98795	KEZ98795	6	6.37

* Número do spot correspondente ao gel mostrado na Figura 6.

** Spot identificado nos géis correspondentes às duas cepas analisadas, com os valores de cobertura mostrados para selvagem (WT) e mutante (ΔΧΑС1940).

*** Número de acesso da proteína no National Center for Biotechnology Information (NCBI).

Tabela 6. *Spots* diferencialmente expressos identificados no ensaio de eletroforese bidimensional comparando-se as proteínas totais das linhagens WT e ΔXAC1420.

Spot*	Proteína	Razão (WT/ ∆XAC1420)	Número de acesso ***	Gene #	Cobertura de Sequência (%)**	pl
1	carbamoyl-phosphate synthase		AAM36724			
-	large chain	2,482	7010130721	XAC1862	6	4.92
2	Oar protein	3,362	AAM37588	XAC2743	1	5.18
3	TonB-dependent receptor	2,497	AAM38287	XAC3444	8	4.79
4	OmpA-related protein	3,095	AAM39109	XAC4274	1	5.29
5	Oar protein	3,107	CEH66923	XAC3610_7 030010	11	4.97
6	OmpA-like protein	2,21	AAM43352	XCC4131	2	5.08
8	conserved hypothetical protein	4,494	AAM37165	XAC2312	2	5.27
10	ATP-dependent Clp protease		AAA28020			
10	subunit	2,042	AA10138033	XAC3195	1	5.40
14	peptidyl-dipeptidase	3,097	AAM36326	XAC1456	6	7.21
15	ferric-rhodotorulic acid		CEH50303	XACJK48_6		
15	transporter	1,995	CENSUSUS	550003	13	4.89
16	peptidyl-dipeptidase	0,231	AAM36326	XAC1456	1	7.21
22	S-adenosyl-L-homocysteine hydrolase	0,423	WP_040150688	PRK05476	2	5.51
23	glycerol-3-phosphate	0.420	AAM35252	XAC0260	1	6.92
25	avidereductase	0,439	AAN427EE9	XAC0360	2	0.8Z
25	UTD glugges 1 phosphoto	0,575	AAIVI57556	AC2715	2	5.69
26	uridylyltransferase	0,557	WP_040229395	PRK10122	9	5.45
27	205 ribosomal protoin 52	0 111	CEH57742	XAC3610_3	22	8 50
20	205 ribosomal protein 52	0,111	AAN/25961	VAC0078	32	10.12
25	alkyl bydroperoxide reductase	0,279	AAWIJJOU	74C0378	4	10.12
32	subunit C	0,568	AAM35795	XAC0907	41	6.15
	nucleoside diphosphate kinase					
35	(NDK) (NDP kinase) (Nucleoside-		CEH62726	XAC3610_5		
	2-P	0,55		390026	14	5.62

* Número do spot correspondente ao gel mostrado na Figura 7.

** Spot identificado nos géis correspondentes às duas cepas analisadas, com os valores de cobertura

mostrados para selvagem (WT) e mutante (ΔXAC1420).

*** Número de acesso da proteína no National Center for Biotechnology Information (NCBI).

APÊNDICE B

Análise por qRT-PCR dos genes que codificam proteínas diferencialmente expressas encontradas na análise proteômica.

Para a confirmação por qRT-PCR foram escolhidos os genes codificadores de 6 das 12 proteínas que haviam sido previamente identificadas em mais de uma análise proteômica nas cepas estudadas no primeiro período deste projeto, apresentadas na **Tabela 4** desta dissertação com suas respectivas razões de diferenças de expressão. As 12 proteínas são descritas como: regulador de resposta (XAC3443), protease (XAC0631), proteínas de membrana externa hipotéticas (XAC3657 e XAC0019), uma proteína envolvida na síntese de antibiótico (XAC2341), 5 proteínas envolvidas no metabolismo de carboidratos (XAC3835, XAC0358, XAC2071, XAC3344 e XAC2292), um fator de alongamento (XAC1004) e uma isomerase (XAC0865).

O regulador de resposta XAC3443 apresenta homologia com 95% de identidade a XCC3315, um outro regulador de resposta presente em *Xcc*, descrito como tendo um papel na resposta ao estresse geral e estando envolvido na expressão de genes responsáveis pela síntese de flagelos. Portanto, XCC3315 pode influenciar também na virulência e devido a sua alta homologia podemos supor que XAC3443 tenha função semelhante em *Xac* (Liu *et al.*, 2013).

O gene que codifica a protease XAC0631, *ptrB*, apesar de ainda não haver literatura sobre ele para *Xac*, já foi descrito em *Pseudomonas aeruginosa* como um novo repressor do sistema de secreção do tipo III (TTSS), coordenando tanto sua repressão quanto a síntese de piocianina, que é um fator de virulência típico de *P. aeruginosa* (Wu e Jin, 2005).

XAC2341, glutaril-7-ACA acilase, pertence a uma pequena classe de proteínas, as quais são altamente específicas para a hidrólise ou síntese de α -aminas contendo amidas e ésteres, incluindo antibióticos β -lactâmicos tais como ampicilina, amoxicilina e cefalexina. Essa proteína é codificada pelo gene gaa e estava mais expressa na cepa selvagem em relação às linhagens ΔΧΑC2382/pBRA e ΔΧΑC0258/ΔΧΑC1420 (Blum e Bommarius, 2010).

XAC3835 é uma isocitrato desidrogenase, codificada pelo gene anotado como *icd*, presente na terceira etapa do ciclo do ácido cítrico, tendo como produto α -cetoglutarato e CO₂, convertendo NAD para NADH. XAC0358 é uma glicerol quinase, codificada pelo gene anotado como *glpK*, envolvida na síntese de triacilglicerol e glicerofosfolipídeos. Catalisa a transferência de um grupo fosfato do ATP para o glicerol, formando glicerol-3-fosfato.

XAC2071 é uma glicose-6-fosfato 1-desidrogenase, codificada pelo gene anotado como *zwf*, e catalisa o passo limitante da taxa da via oxidativa de pentose-fosfato, a qual representa a rota para a dissimilação de carboidratos além da glicólise. Sua função principal é prover poder redutor (NADPH) e pentose fosfatos para a síntese de ácidos nucleicos e ácidos graxos. XAC3344 é uma frutose bisfosfato aldolase, e catalisa a reação reversível que divide a aldol frutose 1,6bisfosfato nas trioses fosfato: Fosfato de diidroxiacetona (DHAP) e gliceraldeído 3-fosfato. Também pode produzir DHAP a partir de frutose 1-fosfato e sedoheptulose 1,7-bisfosfato. Essa enzima pode ser usada tanto na via anabólica quanto na via catabólica.

A proteína UTP-glicose-1-fosfato uridililtransferase XAC2292, codificada pelo gene *galU*, também pode estar relacionada com a virulência. Ela foi identificada como mais expressa nas cepas $\Delta XAC2382$ /pBRA e $\Delta XAC0258$ / $\Delta XAC1420$. Seu gene já é bem descrito na literatura pela sua importância na produção de exopolissacarídeos, polissacarídeos capsulares e na formação de biofilme; a sua mutação resulta na perda da patogenicidade em *grapefruit*, sendo essa perda resultado da inabilidade da bactéria de crescer in planta (Guo *et al.*, 2010).

XAC1004 é um fator de alongamento que liga GTP, codificado pelo gene *typA*, e faz parte de um conjunto de proteínas usadas na síntese proteica no processo de ciclo celular e elongação. Esse conjunto facilita a elongação no ribossomo, a partir da formação da primeira à última ligação peptídica. XAC0865 é uma peptidil-prolil cis-trans isomerase, codificada pelo gene surA, uma enzima que interconverte os isômeros cis e trans de ligações peptídicas com prolina.

Outras 6 proteínas que foram encontradas diferencialmente expressas na análise proteômica que compara WT com $\Delta XAC2382$, ou com $\Delta XAC0258/\Delta XAC1420$ também foram escolhidas por serem de grande interesse funcional e são descritas como: regulador de resposta (XAC0834), e 5 proteínas envolvidas no metabolismo de carboidratos (XAC3345, XAC2041, XAC2501, XAC3637, XAC3644).

XAC0834 é um regulador de resposta cuja importância na formação de biofilme é descrita na literatura, sendo que a mutação nesse gene leva a menor formação do mesmo. Esta proteína foi mais expressa na cepa duplo nocaute $\Delta XAC0258/\Delta XAC1420$, que apresenta fenótipo de menor concentração de c-di-GMP (Li e Wang, 2011; Yan e Wang, 2011).

XAC3637, glucosamina-frutose-6-fosfato aminotransferase, GlmS, é conhecida por ser um fator chave que afeta a entrada de amino açúcares na glicólise e a síntese de parede celular. GlmS catalisa a conversão de Frutose-6-fosfato em Glucosamina-6-fosfato, requerida para a biossíntese de parede celular, afetando indiretamente a formação de biofilme e a virulência da bactéria (Kawada-Matsuo *et al.*, 2012). Já a proteína XAC3644, N-acetilglucosamina-1-fosfato uridiltransferase, GlmU, é uma enzima essencial no metabolismo de amino açúcares e catalisa a formação de uridina-difosfo-N-acetilglucosamina, um importante precursor na biossíntese de peptidioglicano e lipopolissacarídeo de bactérias Gram-negativas e Gram-positivas (Suman *et al.*, 2011). Ambas estão mais expressas na cepa selvagem em relação à ΔXAC2382/pBRA, podendo estar relacionadas com o fenótipo menos móvel dessa linhagem.

Pudemos observar que havia uma relação entre duas proteínas que participam da via gliconeogênica, XAC3345 (piruvato quinase) e XAC2041 (fosfoenolpiruvato sintase), com a proteína XAC2501 (proteína de transferência de multifosforila FruB) codificadas pelos genes *pykA, ppsA* e *fruB*, respectivamente. Enquanto XAC2041 e XAC2501 estavam mais expressas na

cepa *ΔXAC2382*/pBRA, XAC3345 estava menos expressa na mesma cepa, em comparação com o selvagem WT/pBRA. De acordo com a literatura, para *Xanthomonas campestris* pv. *campestris* (*Xcc*), homóloga de *Xac*, a via gliconeogênica é necessária para a virulência completa (Liu *et* al., 2013), sendo a fosfoenolpiruvato sintase de grande importância para a mesma. Como a piruvato quinase é a responsável pela transformação de fosfoenolpiruvato (PEP) em piruvato, sua menor expressão pode levar ao aumento da produção de PEP pela fosfoenolpiruvato sintase, que faz a transformação oposta na via glicolítica, podendo, portanto, aumentar os níveis intracelulares de PEP. A proteína de transferência de multifosforila FruB, por sua vez, atua na tomada de frutose do meio externo utilizando para isso um grupo fosfato de PEP, formando frutose-1-fosfato, aumentando assim os níveis intracelulares desse açúcar fosforilado, que é uma fonte mais rápida de ATP. Com base nisso, foi criada a hipótese de que esse perfil de expressão proteica possa estar relacionado com o fenótipo característico de baixo c-di-GMP, quando a bactéria possui maior mobilidade e necessita de uma fonte rápida de ATP (Andrade, 2011).

Os ensaios de qRT-PCR permitem verificar se as diferenças de expressão se dão em nível transcricional ou pós-transcricional. Os resultados obtidos dessas análises estão apresentados nas **Figuras 1**, **2** e **3**.

Figura 1. Diferenças de expressão nos genes que codificam XAC3345, XAC2041, XAC2501 e XAC0834, proteínas encontradas diferencialmente expressas em mais de uma análise proteômica. O ensaio de qRT-PCR foi realizado em triplicatas técnicas, a partir de RNA total extraído de culturas com DO_{600nm} 1,0 em 2xTY, à 30 °C e 200 rpm.

Figura 2. Diferenças de expressão nos genes que codificam XAC3443, XAC0631, XAC2341, XAC3657 e XAC0019, proteínas encontradas diferencialmente expressas em mais de uma análise proteômica. O ensaio de qRT-PCR foi realizado em triplicatas técnicas, a partir de RNA total extraído de culturas com DO_{600nm} 1,0 em 2xTY, à 30 °C e 200 rpm.

Figura 3. Diferenças de expressão nos genes que codificam XAC2292, XAC3637 e XAC3644, proteínas encontradas diferencialmente expressas em mais de uma análise proteômica. O ensaio de qRT-PCR foi realizado em triplicatas técnicas, a partir de RNA total extraído de culturas com DO_{600nm} 1,0 em 2xTY, à 30 °C e 200 rpm.

Não foram encontradas diferenças significativas nos níveis de mRNA de XAC3345, XAC3443, XAC0631, sugerindo que as diferenças de expressão encontradas para as proteínas codificadas por esses genes se dão no nível pós-transcricional. Em XAC3657 e XAC2292, todas as amostras estudadas apresentavam níveis relativos de mRNA duas a três vezes maiores que a selvagem, o que é compatível com os resultados da análise proteômica indicada na **Tabela 4** desta dissertação, portanto, a diferença observada anteriormente pode ter ocorrido no nível transcricional. É interessante notar que XAC2292 é importante para a formação de biofilme, e XAC3657 é descrita como uma proteína hipotética, podendo esta última ser um possível alvo para estudos posteriores de caracterização funcional. Curiosamente, apenas $\Delta XAC0258/\Delta XAC1420$ apresentou diferenças nos níveis relativos de XAC2041 e XAC2501, proteínas envolvidas na tomada de frutose do meio externo, sendo que a primeira estava 2 vezes mais expressa, e a última 2 vezes menos expressa. No mutante $\Delta XAC2382$, que apresentou expressão diferencial dessas proteínas na análise proteômica, não houve alteração no nível de transcrição.

XAC0834, uma proteína que faz parte de um sistema de dois componentes e que havia sido encontrada mais expressa no duplo nocaute $\Delta XAC0258/\Delta 1420$ na análise proteômica, só foi encontrada mais expressa em $\Delta XAC0258$ e $\Delta XAC1420$, não havendo diferença de expressão em $\Delta XAC0258/\Delta 1420$ com a cepa selvagem.

Um resultado parecido ocorreu com XAC0019, uma proteína hipotética, sendo encontrada de 3 a 4 vezes mais expressa nas cepas $\Delta XAC1420$ e $\Delta XAC0258/\Delta XAC1420$, mas que não apresenta diferença na expressão no mutante simples $\Delta XAC0258$, sugerindo estar sob a influência apenas de XAC1420.

XAC2341, que participa na síntese de antibióticos, foi encontrada relativamente menos expressa em todas as amostras estudadas, sendo mais evidente em Δ XAC1420. Esse resultado também é compatível com o encontrado na análise proteômica, com a linhagem selvagem apresentando maior expressão dessa proteína.

Apesar de terem sido encontradas apenas na análise proteômica de $\Delta XAC2382$, houve diferenças significativas na expressão de XAC3637 e XAC3644. XAC3637 estava duas vezes mais expressa em $\Delta XAC0258/\Delta 1420$, com níveis semelhantes ao selvagem para as outras amostras; e XAC3644 foi mais expressa em $\Delta XAC0258$, $\Delta XAC1940$ e $\Delta XAC0258/\Delta XAC1420$, com o oposto sendo observado em $\Delta XAC1420$.

Como XAC3657 é uma proteína hipotética e esteve de duas a três vezes mais expressa nos mutantes testados (**Figura 2**), foi feita uma análise computacional para tentar predizer qual seria a sua função biológica em *Xac*. XAC3657 é uma proteína hipotética que possui 270 aminoácidos. Seu número de acesso no NCBI é AAM38500, e no UNIPROT é Q8PGGO, e apresenta os motivos conservados: OMP_b-br1, encontrado em uma ampla variedade de proteínas de membrana externa, assume uma conformação de barril beta; DUF481, essa família inclui várias proteínas de função não caracterizada; e DUF732, essa família consiste de várias proteínas de *Mycobacterium tuberculosis* e lepra de função desconhecida. No CDD seus domínios são descritos como: OMP_w_GlyGly, membros dessa família proteica são proteínas de membrana externa, como pode ser visto pela sua homologia a proteína YfaZ e pela região alvo de OMP no terminal C, incluindo um resíduo Phe no terminal C. Membros dessa família proteica são encontrados na maioria dos genomas com sinal proteico GlyGly-CTERM e com a enzima putativa rhombosortase, apesar de esse relacionamento ser fortuito.